This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of addition in a univariate polynomial ring. (Contributed by Stefan O'Rear, 21-Mar-2015) (Revised by Mario Carneiro, 4-Jul-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ply1plusg.y | |- Y = ( Poly1 ` R ) |
|
| ply1plusg.s | |- S = ( 1o mPoly R ) |
||
| ply1plusg.p | |- .+ = ( +g ` Y ) |
||
| Assertion | ply1plusg | |- .+ = ( +g ` S ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ply1plusg.y | |- Y = ( Poly1 ` R ) |
|
| 2 | ply1plusg.s | |- S = ( 1o mPoly R ) |
|
| 3 | ply1plusg.p | |- .+ = ( +g ` Y ) |
|
| 4 | eqid | |- ( 1o mPwSer R ) = ( 1o mPwSer R ) |
|
| 5 | eqid | |- ( +g ` S ) = ( +g ` S ) |
|
| 6 | 2 4 5 | mplplusg | |- ( +g ` S ) = ( +g ` ( 1o mPwSer R ) ) |
| 7 | eqid | |- ( PwSer1 ` R ) = ( PwSer1 ` R ) |
|
| 8 | eqid | |- ( +g ` ( PwSer1 ` R ) ) = ( +g ` ( PwSer1 ` R ) ) |
|
| 9 | 7 4 8 | psr1plusg | |- ( +g ` ( PwSer1 ` R ) ) = ( +g ` ( 1o mPwSer R ) ) |
| 10 | fvex | |- ( Base ` ( 1o mPoly R ) ) e. _V |
|
| 11 | 1 7 | ply1val | |- Y = ( ( PwSer1 ` R ) |`s ( Base ` ( 1o mPoly R ) ) ) |
| 12 | 11 8 | ressplusg | |- ( ( Base ` ( 1o mPoly R ) ) e. _V -> ( +g ` ( PwSer1 ` R ) ) = ( +g ` Y ) ) |
| 13 | 10 12 | ax-mp | |- ( +g ` ( PwSer1 ` R ) ) = ( +g ` Y ) |
| 14 | 6 9 13 | 3eqtr2i | |- ( +g ` S ) = ( +g ` Y ) |
| 15 | 3 14 | eqtr4i | |- .+ = ( +g ` S ) |