This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A particular coefficient of an addition. (Contributed by Stefan O'Rear, 23-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | coe1add.y | |- Y = ( Poly1 ` R ) |
|
| coe1add.b | |- B = ( Base ` Y ) |
||
| coe1add.p | |- .+b = ( +g ` Y ) |
||
| coe1add.q | |- .+ = ( +g ` R ) |
||
| Assertion | coe1addfv | |- ( ( ( R e. Ring /\ F e. B /\ G e. B ) /\ X e. NN0 ) -> ( ( coe1 ` ( F .+b G ) ) ` X ) = ( ( ( coe1 ` F ) ` X ) .+ ( ( coe1 ` G ) ` X ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coe1add.y | |- Y = ( Poly1 ` R ) |
|
| 2 | coe1add.b | |- B = ( Base ` Y ) |
|
| 3 | coe1add.p | |- .+b = ( +g ` Y ) |
|
| 4 | coe1add.q | |- .+ = ( +g ` R ) |
|
| 5 | 1 2 3 4 | coe1add | |- ( ( R e. Ring /\ F e. B /\ G e. B ) -> ( coe1 ` ( F .+b G ) ) = ( ( coe1 ` F ) oF .+ ( coe1 ` G ) ) ) |
| 6 | 5 | adantr | |- ( ( ( R e. Ring /\ F e. B /\ G e. B ) /\ X e. NN0 ) -> ( coe1 ` ( F .+b G ) ) = ( ( coe1 ` F ) oF .+ ( coe1 ` G ) ) ) |
| 7 | 6 | fveq1d | |- ( ( ( R e. Ring /\ F e. B /\ G e. B ) /\ X e. NN0 ) -> ( ( coe1 ` ( F .+b G ) ) ` X ) = ( ( ( coe1 ` F ) oF .+ ( coe1 ` G ) ) ` X ) ) |
| 8 | eqid | |- ( coe1 ` F ) = ( coe1 ` F ) |
|
| 9 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 10 | 8 2 1 9 | coe1f | |- ( F e. B -> ( coe1 ` F ) : NN0 --> ( Base ` R ) ) |
| 11 | 10 | ffnd | |- ( F e. B -> ( coe1 ` F ) Fn NN0 ) |
| 12 | 11 | 3ad2ant2 | |- ( ( R e. Ring /\ F e. B /\ G e. B ) -> ( coe1 ` F ) Fn NN0 ) |
| 13 | 12 | adantr | |- ( ( ( R e. Ring /\ F e. B /\ G e. B ) /\ X e. NN0 ) -> ( coe1 ` F ) Fn NN0 ) |
| 14 | eqid | |- ( coe1 ` G ) = ( coe1 ` G ) |
|
| 15 | 14 2 1 9 | coe1f | |- ( G e. B -> ( coe1 ` G ) : NN0 --> ( Base ` R ) ) |
| 16 | 15 | ffnd | |- ( G e. B -> ( coe1 ` G ) Fn NN0 ) |
| 17 | 16 | 3ad2ant3 | |- ( ( R e. Ring /\ F e. B /\ G e. B ) -> ( coe1 ` G ) Fn NN0 ) |
| 18 | 17 | adantr | |- ( ( ( R e. Ring /\ F e. B /\ G e. B ) /\ X e. NN0 ) -> ( coe1 ` G ) Fn NN0 ) |
| 19 | nn0ex | |- NN0 e. _V |
|
| 20 | 19 | a1i | |- ( ( ( R e. Ring /\ F e. B /\ G e. B ) /\ X e. NN0 ) -> NN0 e. _V ) |
| 21 | simpr | |- ( ( ( R e. Ring /\ F e. B /\ G e. B ) /\ X e. NN0 ) -> X e. NN0 ) |
|
| 22 | fnfvof | |- ( ( ( ( coe1 ` F ) Fn NN0 /\ ( coe1 ` G ) Fn NN0 ) /\ ( NN0 e. _V /\ X e. NN0 ) ) -> ( ( ( coe1 ` F ) oF .+ ( coe1 ` G ) ) ` X ) = ( ( ( coe1 ` F ) ` X ) .+ ( ( coe1 ` G ) ` X ) ) ) |
|
| 23 | 13 18 20 21 22 | syl22anc | |- ( ( ( R e. Ring /\ F e. B /\ G e. B ) /\ X e. NN0 ) -> ( ( ( coe1 ` F ) oF .+ ( coe1 ` G ) ) ` X ) = ( ( ( coe1 ` F ) ` X ) .+ ( ( coe1 ` G ) ` X ) ) ) |
| 24 | 7 23 | eqtrd | |- ( ( ( R e. Ring /\ F e. B /\ G e. B ) /\ X e. NN0 ) -> ( ( coe1 ` ( F .+b G ) ) ` X ) = ( ( ( coe1 ` F ) ` X ) .+ ( ( coe1 ` G ) ` X ) ) ) |