This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The coefficient vector of an addition. (Contributed by Stefan O'Rear, 24-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | coe1add.y | ⊢ 𝑌 = ( Poly1 ‘ 𝑅 ) | |
| coe1add.b | ⊢ 𝐵 = ( Base ‘ 𝑌 ) | ||
| coe1add.p | ⊢ ✚ = ( +g ‘ 𝑌 ) | ||
| coe1add.q | ⊢ + = ( +g ‘ 𝑅 ) | ||
| Assertion | coe1add | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) → ( coe1 ‘ ( 𝐹 ✚ 𝐺 ) ) = ( ( coe1 ‘ 𝐹 ) ∘f + ( coe1 ‘ 𝐺 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coe1add.y | ⊢ 𝑌 = ( Poly1 ‘ 𝑅 ) | |
| 2 | coe1add.b | ⊢ 𝐵 = ( Base ‘ 𝑌 ) | |
| 3 | coe1add.p | ⊢ ✚ = ( +g ‘ 𝑌 ) | |
| 4 | coe1add.q | ⊢ + = ( +g ‘ 𝑅 ) | |
| 5 | eqid | ⊢ ( 1o mPoly 𝑅 ) = ( 1o mPoly 𝑅 ) | |
| 6 | 1 2 | ply1bas | ⊢ 𝐵 = ( Base ‘ ( 1o mPoly 𝑅 ) ) |
| 7 | 1 5 3 | ply1plusg | ⊢ ✚ = ( +g ‘ ( 1o mPoly 𝑅 ) ) |
| 8 | simp2 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) → 𝐹 ∈ 𝐵 ) | |
| 9 | simp3 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) → 𝐺 ∈ 𝐵 ) | |
| 10 | 5 6 4 7 8 9 | mpladd | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) → ( 𝐹 ✚ 𝐺 ) = ( 𝐹 ∘f + 𝐺 ) ) |
| 11 | 10 | coeq1d | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) → ( ( 𝐹 ✚ 𝐺 ) ∘ ( 𝑎 ∈ ℕ0 ↦ ( 1o × { 𝑎 } ) ) ) = ( ( 𝐹 ∘f + 𝐺 ) ∘ ( 𝑎 ∈ ℕ0 ↦ ( 1o × { 𝑎 } ) ) ) ) |
| 12 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 13 | 1 2 12 | ply1basf | ⊢ ( 𝐹 ∈ 𝐵 → 𝐹 : ( ℕ0 ↑m 1o ) ⟶ ( Base ‘ 𝑅 ) ) |
| 14 | 13 | ffnd | ⊢ ( 𝐹 ∈ 𝐵 → 𝐹 Fn ( ℕ0 ↑m 1o ) ) |
| 15 | 14 | 3ad2ant2 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) → 𝐹 Fn ( ℕ0 ↑m 1o ) ) |
| 16 | 1 2 12 | ply1basf | ⊢ ( 𝐺 ∈ 𝐵 → 𝐺 : ( ℕ0 ↑m 1o ) ⟶ ( Base ‘ 𝑅 ) ) |
| 17 | 16 | ffnd | ⊢ ( 𝐺 ∈ 𝐵 → 𝐺 Fn ( ℕ0 ↑m 1o ) ) |
| 18 | 17 | 3ad2ant3 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) → 𝐺 Fn ( ℕ0 ↑m 1o ) ) |
| 19 | df1o2 | ⊢ 1o = { ∅ } | |
| 20 | nn0ex | ⊢ ℕ0 ∈ V | |
| 21 | 0ex | ⊢ ∅ ∈ V | |
| 22 | eqid | ⊢ ( 𝑎 ∈ ℕ0 ↦ ( 1o × { 𝑎 } ) ) = ( 𝑎 ∈ ℕ0 ↦ ( 1o × { 𝑎 } ) ) | |
| 23 | 19 20 21 22 | mapsnf1o3 | ⊢ ( 𝑎 ∈ ℕ0 ↦ ( 1o × { 𝑎 } ) ) : ℕ0 –1-1-onto→ ( ℕ0 ↑m 1o ) |
| 24 | f1of | ⊢ ( ( 𝑎 ∈ ℕ0 ↦ ( 1o × { 𝑎 } ) ) : ℕ0 –1-1-onto→ ( ℕ0 ↑m 1o ) → ( 𝑎 ∈ ℕ0 ↦ ( 1o × { 𝑎 } ) ) : ℕ0 ⟶ ( ℕ0 ↑m 1o ) ) | |
| 25 | 23 24 | mp1i | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) → ( 𝑎 ∈ ℕ0 ↦ ( 1o × { 𝑎 } ) ) : ℕ0 ⟶ ( ℕ0 ↑m 1o ) ) |
| 26 | ovexd | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) → ( ℕ0 ↑m 1o ) ∈ V ) | |
| 27 | 20 | a1i | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) → ℕ0 ∈ V ) |
| 28 | inidm | ⊢ ( ( ℕ0 ↑m 1o ) ∩ ( ℕ0 ↑m 1o ) ) = ( ℕ0 ↑m 1o ) | |
| 29 | 15 18 25 26 26 27 28 | ofco | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) → ( ( 𝐹 ∘f + 𝐺 ) ∘ ( 𝑎 ∈ ℕ0 ↦ ( 1o × { 𝑎 } ) ) ) = ( ( 𝐹 ∘ ( 𝑎 ∈ ℕ0 ↦ ( 1o × { 𝑎 } ) ) ) ∘f + ( 𝐺 ∘ ( 𝑎 ∈ ℕ0 ↦ ( 1o × { 𝑎 } ) ) ) ) ) |
| 30 | 11 29 | eqtrd | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) → ( ( 𝐹 ✚ 𝐺 ) ∘ ( 𝑎 ∈ ℕ0 ↦ ( 1o × { 𝑎 } ) ) ) = ( ( 𝐹 ∘ ( 𝑎 ∈ ℕ0 ↦ ( 1o × { 𝑎 } ) ) ) ∘f + ( 𝐺 ∘ ( 𝑎 ∈ ℕ0 ↦ ( 1o × { 𝑎 } ) ) ) ) ) |
| 31 | 1 | ply1ring | ⊢ ( 𝑅 ∈ Ring → 𝑌 ∈ Ring ) |
| 32 | 2 3 | ringacl | ⊢ ( ( 𝑌 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) → ( 𝐹 ✚ 𝐺 ) ∈ 𝐵 ) |
| 33 | 31 32 | syl3an1 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) → ( 𝐹 ✚ 𝐺 ) ∈ 𝐵 ) |
| 34 | eqid | ⊢ ( coe1 ‘ ( 𝐹 ✚ 𝐺 ) ) = ( coe1 ‘ ( 𝐹 ✚ 𝐺 ) ) | |
| 35 | 34 2 1 22 | coe1fval2 | ⊢ ( ( 𝐹 ✚ 𝐺 ) ∈ 𝐵 → ( coe1 ‘ ( 𝐹 ✚ 𝐺 ) ) = ( ( 𝐹 ✚ 𝐺 ) ∘ ( 𝑎 ∈ ℕ0 ↦ ( 1o × { 𝑎 } ) ) ) ) |
| 36 | 33 35 | syl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) → ( coe1 ‘ ( 𝐹 ✚ 𝐺 ) ) = ( ( 𝐹 ✚ 𝐺 ) ∘ ( 𝑎 ∈ ℕ0 ↦ ( 1o × { 𝑎 } ) ) ) ) |
| 37 | eqid | ⊢ ( coe1 ‘ 𝐹 ) = ( coe1 ‘ 𝐹 ) | |
| 38 | 37 2 1 22 | coe1fval2 | ⊢ ( 𝐹 ∈ 𝐵 → ( coe1 ‘ 𝐹 ) = ( 𝐹 ∘ ( 𝑎 ∈ ℕ0 ↦ ( 1o × { 𝑎 } ) ) ) ) |
| 39 | 38 | 3ad2ant2 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) → ( coe1 ‘ 𝐹 ) = ( 𝐹 ∘ ( 𝑎 ∈ ℕ0 ↦ ( 1o × { 𝑎 } ) ) ) ) |
| 40 | eqid | ⊢ ( coe1 ‘ 𝐺 ) = ( coe1 ‘ 𝐺 ) | |
| 41 | 40 2 1 22 | coe1fval2 | ⊢ ( 𝐺 ∈ 𝐵 → ( coe1 ‘ 𝐺 ) = ( 𝐺 ∘ ( 𝑎 ∈ ℕ0 ↦ ( 1o × { 𝑎 } ) ) ) ) |
| 42 | 41 | 3ad2ant3 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) → ( coe1 ‘ 𝐺 ) = ( 𝐺 ∘ ( 𝑎 ∈ ℕ0 ↦ ( 1o × { 𝑎 } ) ) ) ) |
| 43 | 39 42 | oveq12d | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) → ( ( coe1 ‘ 𝐹 ) ∘f + ( coe1 ‘ 𝐺 ) ) = ( ( 𝐹 ∘ ( 𝑎 ∈ ℕ0 ↦ ( 1o × { 𝑎 } ) ) ) ∘f + ( 𝐺 ∘ ( 𝑎 ∈ ℕ0 ↦ ( 1o × { 𝑎 } ) ) ) ) ) |
| 44 | 30 36 43 | 3eqtr4d | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) → ( coe1 ‘ ( 𝐹 ✚ 𝐺 ) ) = ( ( coe1 ‘ 𝐹 ) ∘f + ( coe1 ‘ 𝐺 ) ) ) |