This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Explicit bijection in the reverse of mapsnf1o2 . (Contributed by Stefan O'Rear, 24-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mapsncnv.s | |- S = { X } |
|
| mapsncnv.b | |- B e. _V |
||
| mapsncnv.x | |- X e. _V |
||
| mapsnf1o3.f | |- F = ( y e. B |-> ( S X. { y } ) ) |
||
| Assertion | mapsnf1o3 | |- F : B -1-1-onto-> ( B ^m S ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mapsncnv.s | |- S = { X } |
|
| 2 | mapsncnv.b | |- B e. _V |
|
| 3 | mapsncnv.x | |- X e. _V |
|
| 4 | mapsnf1o3.f | |- F = ( y e. B |-> ( S X. { y } ) ) |
|
| 5 | eqid | |- ( x e. ( B ^m S ) |-> ( x ` X ) ) = ( x e. ( B ^m S ) |-> ( x ` X ) ) |
|
| 6 | 1 2 3 5 | mapsnf1o2 | |- ( x e. ( B ^m S ) |-> ( x ` X ) ) : ( B ^m S ) -1-1-onto-> B |
| 7 | f1ocnv | |- ( ( x e. ( B ^m S ) |-> ( x ` X ) ) : ( B ^m S ) -1-1-onto-> B -> `' ( x e. ( B ^m S ) |-> ( x ` X ) ) : B -1-1-onto-> ( B ^m S ) ) |
|
| 8 | 6 7 | ax-mp | |- `' ( x e. ( B ^m S ) |-> ( x ` X ) ) : B -1-1-onto-> ( B ^m S ) |
| 9 | 1 2 3 5 | mapsncnv | |- `' ( x e. ( B ^m S ) |-> ( x ` X ) ) = ( y e. B |-> ( S X. { y } ) ) |
| 10 | 4 9 | eqtr4i | |- F = `' ( x e. ( B ^m S ) |-> ( x ` X ) ) |
| 11 | f1oeq1 | |- ( F = `' ( x e. ( B ^m S ) |-> ( x ` X ) ) -> ( F : B -1-1-onto-> ( B ^m S ) <-> `' ( x e. ( B ^m S ) |-> ( x ` X ) ) : B -1-1-onto-> ( B ^m S ) ) ) |
|
| 12 | 10 11 | ax-mp | |- ( F : B -1-1-onto-> ( B ^m S ) <-> `' ( x e. ( B ^m S ) |-> ( x ` X ) ) : B -1-1-onto-> ( B ^m S ) ) |
| 13 | 8 12 | mpbir | |- F : B -1-1-onto-> ( B ^m S ) |