This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Univariate polynomial base set elements are functions. (Contributed by Stefan O'Rear, 21-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ply1rcl.p | |- P = ( Poly1 ` R ) |
|
| ply1rcl.b | |- B = ( Base ` P ) |
||
| ply1basf.k | |- K = ( Base ` R ) |
||
| Assertion | ply1basf | |- ( F e. B -> F : ( NN0 ^m 1o ) --> K ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ply1rcl.p | |- P = ( Poly1 ` R ) |
|
| 2 | ply1rcl.b | |- B = ( Base ` P ) |
|
| 3 | ply1basf.k | |- K = ( Base ` R ) |
|
| 4 | eqid | |- ( 1o mPoly R ) = ( 1o mPoly R ) |
|
| 5 | eqid | |- ( Base ` ( 1o mPoly R ) ) = ( Base ` ( 1o mPoly R ) ) |
|
| 6 | psr1baslem | |- ( NN0 ^m 1o ) = { a e. ( NN0 ^m 1o ) | ( `' a " NN ) e. Fin } |
|
| 7 | id | |- ( F e. B -> F e. B ) |
|
| 8 | 1 2 | ply1bas | |- B = ( Base ` ( 1o mPoly R ) ) |
| 9 | 7 8 | eleqtrdi | |- ( F e. B -> F e. ( Base ` ( 1o mPoly R ) ) ) |
| 10 | 4 3 5 6 9 | mplelf | |- ( F e. B -> F : ( NN0 ^m 1o ) --> K ) |