This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Negation of a product in a non-unital ring ( mulneg1 analog). In contrast to ringmneg1 , the proof does not (and cannot) make use of the existence of a ring unity. (Contributed by AV, 17-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rngneglmul.b | |- B = ( Base ` R ) |
|
| rngneglmul.t | |- .x. = ( .r ` R ) |
||
| rngneglmul.n | |- N = ( invg ` R ) |
||
| rngneglmul.r | |- ( ph -> R e. Rng ) |
||
| rngneglmul.x | |- ( ph -> X e. B ) |
||
| rngneglmul.y | |- ( ph -> Y e. B ) |
||
| Assertion | rngmneg1 | |- ( ph -> ( ( N ` X ) .x. Y ) = ( N ` ( X .x. Y ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rngneglmul.b | |- B = ( Base ` R ) |
|
| 2 | rngneglmul.t | |- .x. = ( .r ` R ) |
|
| 3 | rngneglmul.n | |- N = ( invg ` R ) |
|
| 4 | rngneglmul.r | |- ( ph -> R e. Rng ) |
|
| 5 | rngneglmul.x | |- ( ph -> X e. B ) |
|
| 6 | rngneglmul.y | |- ( ph -> Y e. B ) |
|
| 7 | eqid | |- ( +g ` R ) = ( +g ` R ) |
|
| 8 | eqid | |- ( 0g ` R ) = ( 0g ` R ) |
|
| 9 | rnggrp | |- ( R e. Rng -> R e. Grp ) |
|
| 10 | 4 9 | syl | |- ( ph -> R e. Grp ) |
| 11 | 1 7 8 3 10 5 | grprinvd | |- ( ph -> ( X ( +g ` R ) ( N ` X ) ) = ( 0g ` R ) ) |
| 12 | 11 | oveq1d | |- ( ph -> ( ( X ( +g ` R ) ( N ` X ) ) .x. Y ) = ( ( 0g ` R ) .x. Y ) ) |
| 13 | 1 2 8 | rnglz | |- ( ( R e. Rng /\ Y e. B ) -> ( ( 0g ` R ) .x. Y ) = ( 0g ` R ) ) |
| 14 | 4 6 13 | syl2anc | |- ( ph -> ( ( 0g ` R ) .x. Y ) = ( 0g ` R ) ) |
| 15 | 12 14 | eqtrd | |- ( ph -> ( ( X ( +g ` R ) ( N ` X ) ) .x. Y ) = ( 0g ` R ) ) |
| 16 | 1 2 | rngcl | |- ( ( R e. Rng /\ X e. B /\ Y e. B ) -> ( X .x. Y ) e. B ) |
| 17 | 4 5 6 16 | syl3anc | |- ( ph -> ( X .x. Y ) e. B ) |
| 18 | 1 3 10 5 | grpinvcld | |- ( ph -> ( N ` X ) e. B ) |
| 19 | 1 2 | rngcl | |- ( ( R e. Rng /\ ( N ` X ) e. B /\ Y e. B ) -> ( ( N ` X ) .x. Y ) e. B ) |
| 20 | 4 18 6 19 | syl3anc | |- ( ph -> ( ( N ` X ) .x. Y ) e. B ) |
| 21 | 1 7 8 3 | grpinvid1 | |- ( ( R e. Grp /\ ( X .x. Y ) e. B /\ ( ( N ` X ) .x. Y ) e. B ) -> ( ( N ` ( X .x. Y ) ) = ( ( N ` X ) .x. Y ) <-> ( ( X .x. Y ) ( +g ` R ) ( ( N ` X ) .x. Y ) ) = ( 0g ` R ) ) ) |
| 22 | 10 17 20 21 | syl3anc | |- ( ph -> ( ( N ` ( X .x. Y ) ) = ( ( N ` X ) .x. Y ) <-> ( ( X .x. Y ) ( +g ` R ) ( ( N ` X ) .x. Y ) ) = ( 0g ` R ) ) ) |
| 23 | 1 7 2 | rngdir | |- ( ( R e. Rng /\ ( X e. B /\ ( N ` X ) e. B /\ Y e. B ) ) -> ( ( X ( +g ` R ) ( N ` X ) ) .x. Y ) = ( ( X .x. Y ) ( +g ` R ) ( ( N ` X ) .x. Y ) ) ) |
| 24 | 23 | eqcomd | |- ( ( R e. Rng /\ ( X e. B /\ ( N ` X ) e. B /\ Y e. B ) ) -> ( ( X .x. Y ) ( +g ` R ) ( ( N ` X ) .x. Y ) ) = ( ( X ( +g ` R ) ( N ` X ) ) .x. Y ) ) |
| 25 | 4 5 18 6 24 | syl13anc | |- ( ph -> ( ( X .x. Y ) ( +g ` R ) ( ( N ` X ) .x. Y ) ) = ( ( X ( +g ` R ) ( N ` X ) ) .x. Y ) ) |
| 26 | 25 | eqeq1d | |- ( ph -> ( ( ( X .x. Y ) ( +g ` R ) ( ( N ` X ) .x. Y ) ) = ( 0g ` R ) <-> ( ( X ( +g ` R ) ( N ` X ) ) .x. Y ) = ( 0g ` R ) ) ) |
| 27 | 22 26 | bitrd | |- ( ph -> ( ( N ` ( X .x. Y ) ) = ( ( N ` X ) .x. Y ) <-> ( ( X ( +g ` R ) ( N ` X ) ) .x. Y ) = ( 0g ` R ) ) ) |
| 28 | 15 27 | mpbird | |- ( ph -> ( N ` ( X .x. Y ) ) = ( ( N ` X ) .x. Y ) ) |
| 29 | 28 | eqcomd | |- ( ph -> ( ( N ` X ) .x. Y ) = ( N ` ( X .x. Y ) ) ) |