This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The zero of a non-unital ring is a right-absorbing element. (Contributed by FL, 31-Aug-2009) Generalization of ringrz . (Revised by AV, 16-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rngcl.b | |- B = ( Base ` R ) |
|
| rngcl.t | |- .x. = ( .r ` R ) |
||
| rnglz.z | |- .0. = ( 0g ` R ) |
||
| Assertion | rngrz | |- ( ( R e. Rng /\ X e. B ) -> ( X .x. .0. ) = .0. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rngcl.b | |- B = ( Base ` R ) |
|
| 2 | rngcl.t | |- .x. = ( .r ` R ) |
|
| 3 | rnglz.z | |- .0. = ( 0g ` R ) |
|
| 4 | rnggrp | |- ( R e. Rng -> R e. Grp ) |
|
| 5 | 1 3 | grpidcl | |- ( R e. Grp -> .0. e. B ) |
| 6 | eqid | |- ( +g ` R ) = ( +g ` R ) |
|
| 7 | 1 6 3 | grplid | |- ( ( R e. Grp /\ .0. e. B ) -> ( .0. ( +g ` R ) .0. ) = .0. ) |
| 8 | 4 5 7 | syl2anc2 | |- ( R e. Rng -> ( .0. ( +g ` R ) .0. ) = .0. ) |
| 9 | 8 | adantr | |- ( ( R e. Rng /\ X e. B ) -> ( .0. ( +g ` R ) .0. ) = .0. ) |
| 10 | 9 | oveq2d | |- ( ( R e. Rng /\ X e. B ) -> ( X .x. ( .0. ( +g ` R ) .0. ) ) = ( X .x. .0. ) ) |
| 11 | simpr | |- ( ( R e. Rng /\ X e. B ) -> X e. B ) |
|
| 12 | 1 3 | rng0cl | |- ( R e. Rng -> .0. e. B ) |
| 13 | 12 | adantr | |- ( ( R e. Rng /\ X e. B ) -> .0. e. B ) |
| 14 | 11 13 13 | 3jca | |- ( ( R e. Rng /\ X e. B ) -> ( X e. B /\ .0. e. B /\ .0. e. B ) ) |
| 15 | 1 6 2 | rngdi | |- ( ( R e. Rng /\ ( X e. B /\ .0. e. B /\ .0. e. B ) ) -> ( X .x. ( .0. ( +g ` R ) .0. ) ) = ( ( X .x. .0. ) ( +g ` R ) ( X .x. .0. ) ) ) |
| 16 | 14 15 | syldan | |- ( ( R e. Rng /\ X e. B ) -> ( X .x. ( .0. ( +g ` R ) .0. ) ) = ( ( X .x. .0. ) ( +g ` R ) ( X .x. .0. ) ) ) |
| 17 | 4 | adantr | |- ( ( R e. Rng /\ X e. B ) -> R e. Grp ) |
| 18 | 1 2 | rngcl | |- ( ( R e. Rng /\ X e. B /\ .0. e. B ) -> ( X .x. .0. ) e. B ) |
| 19 | 13 18 | mpd3an3 | |- ( ( R e. Rng /\ X e. B ) -> ( X .x. .0. ) e. B ) |
| 20 | 1 6 3 | grplid | |- ( ( R e. Grp /\ ( X .x. .0. ) e. B ) -> ( .0. ( +g ` R ) ( X .x. .0. ) ) = ( X .x. .0. ) ) |
| 21 | 20 | eqcomd | |- ( ( R e. Grp /\ ( X .x. .0. ) e. B ) -> ( X .x. .0. ) = ( .0. ( +g ` R ) ( X .x. .0. ) ) ) |
| 22 | 17 19 21 | syl2anc | |- ( ( R e. Rng /\ X e. B ) -> ( X .x. .0. ) = ( .0. ( +g ` R ) ( X .x. .0. ) ) ) |
| 23 | 10 16 22 | 3eqtr3d | |- ( ( R e. Rng /\ X e. B ) -> ( ( X .x. .0. ) ( +g ` R ) ( X .x. .0. ) ) = ( .0. ( +g ` R ) ( X .x. .0. ) ) ) |
| 24 | 1 6 | grprcan | |- ( ( R e. Grp /\ ( ( X .x. .0. ) e. B /\ .0. e. B /\ ( X .x. .0. ) e. B ) ) -> ( ( ( X .x. .0. ) ( +g ` R ) ( X .x. .0. ) ) = ( .0. ( +g ` R ) ( X .x. .0. ) ) <-> ( X .x. .0. ) = .0. ) ) |
| 25 | 17 19 13 19 24 | syl13anc | |- ( ( R e. Rng /\ X e. B ) -> ( ( ( X .x. .0. ) ( +g ` R ) ( X .x. .0. ) ) = ( .0. ( +g ` R ) ( X .x. .0. ) ) <-> ( X .x. .0. ) = .0. ) ) |
| 26 | 23 25 | mpbid | |- ( ( R e. Rng /\ X e. B ) -> ( X .x. .0. ) = .0. ) |