This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The zero of a non-unital ring is a left-absorbing element. (Contributed by FL, 31-Aug-2009) Generalization of ringlz . (Revised by AV, 17-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rngcl.b | |- B = ( Base ` R ) |
|
| rngcl.t | |- .x. = ( .r ` R ) |
||
| rnglz.z | |- .0. = ( 0g ` R ) |
||
| Assertion | rnglz | |- ( ( R e. Rng /\ X e. B ) -> ( .0. .x. X ) = .0. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rngcl.b | |- B = ( Base ` R ) |
|
| 2 | rngcl.t | |- .x. = ( .r ` R ) |
|
| 3 | rnglz.z | |- .0. = ( 0g ` R ) |
|
| 4 | rngabl | |- ( R e. Rng -> R e. Abel ) |
|
| 5 | ablgrp | |- ( R e. Abel -> R e. Grp ) |
|
| 6 | 4 5 | syl | |- ( R e. Rng -> R e. Grp ) |
| 7 | 1 3 | grpidcl | |- ( R e. Grp -> .0. e. B ) |
| 8 | eqid | |- ( +g ` R ) = ( +g ` R ) |
|
| 9 | 1 8 3 | grplid | |- ( ( R e. Grp /\ .0. e. B ) -> ( .0. ( +g ` R ) .0. ) = .0. ) |
| 10 | 6 7 9 | syl2anc2 | |- ( R e. Rng -> ( .0. ( +g ` R ) .0. ) = .0. ) |
| 11 | 10 | adantr | |- ( ( R e. Rng /\ X e. B ) -> ( .0. ( +g ` R ) .0. ) = .0. ) |
| 12 | 11 | oveq1d | |- ( ( R e. Rng /\ X e. B ) -> ( ( .0. ( +g ` R ) .0. ) .x. X ) = ( .0. .x. X ) ) |
| 13 | simpl | |- ( ( R e. Rng /\ X e. B ) -> R e. Rng ) |
|
| 14 | 6 7 | syl | |- ( R e. Rng -> .0. e. B ) |
| 15 | 14 14 | jca | |- ( R e. Rng -> ( .0. e. B /\ .0. e. B ) ) |
| 16 | 15 | anim1i | |- ( ( R e. Rng /\ X e. B ) -> ( ( .0. e. B /\ .0. e. B ) /\ X e. B ) ) |
| 17 | df-3an | |- ( ( .0. e. B /\ .0. e. B /\ X e. B ) <-> ( ( .0. e. B /\ .0. e. B ) /\ X e. B ) ) |
|
| 18 | 16 17 | sylibr | |- ( ( R e. Rng /\ X e. B ) -> ( .0. e. B /\ .0. e. B /\ X e. B ) ) |
| 19 | 1 8 2 | rngdir | |- ( ( R e. Rng /\ ( .0. e. B /\ .0. e. B /\ X e. B ) ) -> ( ( .0. ( +g ` R ) .0. ) .x. X ) = ( ( .0. .x. X ) ( +g ` R ) ( .0. .x. X ) ) ) |
| 20 | 13 18 19 | syl2anc | |- ( ( R e. Rng /\ X e. B ) -> ( ( .0. ( +g ` R ) .0. ) .x. X ) = ( ( .0. .x. X ) ( +g ` R ) ( .0. .x. X ) ) ) |
| 21 | 6 | adantr | |- ( ( R e. Rng /\ X e. B ) -> R e. Grp ) |
| 22 | 14 | adantr | |- ( ( R e. Rng /\ X e. B ) -> .0. e. B ) |
| 23 | simpr | |- ( ( R e. Rng /\ X e. B ) -> X e. B ) |
|
| 24 | 1 2 | rngcl | |- ( ( R e. Rng /\ .0. e. B /\ X e. B ) -> ( .0. .x. X ) e. B ) |
| 25 | 13 22 23 24 | syl3anc | |- ( ( R e. Rng /\ X e. B ) -> ( .0. .x. X ) e. B ) |
| 26 | 1 8 3 | grprid | |- ( ( R e. Grp /\ ( .0. .x. X ) e. B ) -> ( ( .0. .x. X ) ( +g ` R ) .0. ) = ( .0. .x. X ) ) |
| 27 | 26 | eqcomd | |- ( ( R e. Grp /\ ( .0. .x. X ) e. B ) -> ( .0. .x. X ) = ( ( .0. .x. X ) ( +g ` R ) .0. ) ) |
| 28 | 21 25 27 | syl2anc | |- ( ( R e. Rng /\ X e. B ) -> ( .0. .x. X ) = ( ( .0. .x. X ) ( +g ` R ) .0. ) ) |
| 29 | 12 20 28 | 3eqtr3d | |- ( ( R e. Rng /\ X e. B ) -> ( ( .0. .x. X ) ( +g ` R ) ( .0. .x. X ) ) = ( ( .0. .x. X ) ( +g ` R ) .0. ) ) |
| 30 | 1 8 | grplcan | |- ( ( R e. Grp /\ ( ( .0. .x. X ) e. B /\ .0. e. B /\ ( .0. .x. X ) e. B ) ) -> ( ( ( .0. .x. X ) ( +g ` R ) ( .0. .x. X ) ) = ( ( .0. .x. X ) ( +g ` R ) .0. ) <-> ( .0. .x. X ) = .0. ) ) |
| 31 | 21 25 22 25 30 | syl13anc | |- ( ( R e. Rng /\ X e. B ) -> ( ( ( .0. .x. X ) ( +g ` R ) ( .0. .x. X ) ) = ( ( .0. .x. X ) ( +g ` R ) .0. ) <-> ( .0. .x. X ) = .0. ) ) |
| 32 | 29 31 | mpbid | |- ( ( R e. Rng /\ X e. B ) -> ( .0. .x. X ) = .0. ) |