This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for resubdrg and friends. (Contributed by Mario Carneiro, 4-Dec-2014) Avoid ax-mulf . (Revised by GG, 30-Apr-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cnsubglem.1 | |- ( x e. A -> x e. CC ) |
|
| cnsubglem.2 | |- ( ( x e. A /\ y e. A ) -> ( x + y ) e. A ) |
||
| cnsubglem.3 | |- ( x e. A -> -u x e. A ) |
||
| cnsubrglem.4 | |- 1 e. A |
||
| cnsubrglem.5 | |- ( ( x e. A /\ y e. A ) -> ( x x. y ) e. A ) |
||
| Assertion | cnsubrglem | |- A e. ( SubRing ` CCfld ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnsubglem.1 | |- ( x e. A -> x e. CC ) |
|
| 2 | cnsubglem.2 | |- ( ( x e. A /\ y e. A ) -> ( x + y ) e. A ) |
|
| 3 | cnsubglem.3 | |- ( x e. A -> -u x e. A ) |
|
| 4 | cnsubrglem.4 | |- 1 e. A |
|
| 5 | cnsubrglem.5 | |- ( ( x e. A /\ y e. A ) -> ( x x. y ) e. A ) |
|
| 6 | 1 2 3 4 | cnsubglem | |- A e. ( SubGrp ` CCfld ) |
| 7 | 1 | adantr | |- ( ( x e. A /\ y e. A ) -> x e. CC ) |
| 8 | 1 | ax-gen | |- A. x ( x e. A -> x e. CC ) |
| 9 | eleq1 | |- ( x = y -> ( x e. A <-> y e. A ) ) |
|
| 10 | eleq1 | |- ( x = y -> ( x e. CC <-> y e. CC ) ) |
|
| 11 | 9 10 | imbi12d | |- ( x = y -> ( ( x e. A -> x e. CC ) <-> ( y e. A -> y e. CC ) ) ) |
| 12 | 11 | spvv | |- ( A. x ( x e. A -> x e. CC ) -> ( y e. A -> y e. CC ) ) |
| 13 | 8 12 | ax-mp | |- ( y e. A -> y e. CC ) |
| 14 | 13 | adantl | |- ( ( x e. A /\ y e. A ) -> y e. CC ) |
| 15 | 7 14 | jca | |- ( ( x e. A /\ y e. A ) -> ( x e. CC /\ y e. CC ) ) |
| 16 | ovmpot | |- ( ( x e. CC /\ y e. CC ) -> ( x ( u e. CC , v e. CC |-> ( u x. v ) ) y ) = ( x x. y ) ) |
|
| 17 | 15 16 | syl | |- ( ( x e. A /\ y e. A ) -> ( x ( u e. CC , v e. CC |-> ( u x. v ) ) y ) = ( x x. y ) ) |
| 18 | 17 | eqcomd | |- ( ( x e. A /\ y e. A ) -> ( x x. y ) = ( x ( u e. CC , v e. CC |-> ( u x. v ) ) y ) ) |
| 19 | 18 | eleq1d | |- ( ( x e. A /\ y e. A ) -> ( ( x x. y ) e. A <-> ( x ( u e. CC , v e. CC |-> ( u x. v ) ) y ) e. A ) ) |
| 20 | 5 19 | mpbid | |- ( ( x e. A /\ y e. A ) -> ( x ( u e. CC , v e. CC |-> ( u x. v ) ) y ) e. A ) |
| 21 | 20 | rgen2 | |- A. x e. A A. y e. A ( x ( u e. CC , v e. CC |-> ( u x. v ) ) y ) e. A |
| 22 | cnring | |- CCfld e. Ring |
|
| 23 | cnfldbas | |- CC = ( Base ` CCfld ) |
|
| 24 | cnfld1 | |- 1 = ( 1r ` CCfld ) |
|
| 25 | mpocnfldmul | |- ( u e. CC , v e. CC |-> ( u x. v ) ) = ( .r ` CCfld ) |
|
| 26 | 23 24 25 | issubrg2 | |- ( CCfld e. Ring -> ( A e. ( SubRing ` CCfld ) <-> ( A e. ( SubGrp ` CCfld ) /\ 1 e. A /\ A. x e. A A. y e. A ( x ( u e. CC , v e. CC |-> ( u x. v ) ) y ) e. A ) ) ) |
| 27 | 22 26 | ax-mp | |- ( A e. ( SubRing ` CCfld ) <-> ( A e. ( SubGrp ` CCfld ) /\ 1 e. A /\ A. x e. A A. y e. A ( x ( u e. CC , v e. CC |-> ( u x. v ) ) y ) e. A ) ) |
| 28 | 6 4 21 27 | mpbir3an | |- A e. ( SubRing ` CCfld ) |