This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The disjoint intersection of an unordered triple and a singleton. (Contributed by AV, 14-Nov-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | disjtpsn | |- ( ( A =/= D /\ B =/= D /\ C =/= D ) -> ( { A , B , C } i^i { D } ) = (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-tp | |- { A , B , C } = ( { A , B } u. { C } ) |
|
| 2 | 1 | ineq1i | |- ( { A , B , C } i^i { D } ) = ( ( { A , B } u. { C } ) i^i { D } ) |
| 3 | disjprsn | |- ( ( A =/= D /\ B =/= D ) -> ( { A , B } i^i { D } ) = (/) ) |
|
| 4 | 3 | 3adant3 | |- ( ( A =/= D /\ B =/= D /\ C =/= D ) -> ( { A , B } i^i { D } ) = (/) ) |
| 5 | disjsn2 | |- ( C =/= D -> ( { C } i^i { D } ) = (/) ) |
|
| 6 | 5 | 3ad2ant3 | |- ( ( A =/= D /\ B =/= D /\ C =/= D ) -> ( { C } i^i { D } ) = (/) ) |
| 7 | 4 6 | jca | |- ( ( A =/= D /\ B =/= D /\ C =/= D ) -> ( ( { A , B } i^i { D } ) = (/) /\ ( { C } i^i { D } ) = (/) ) ) |
| 8 | undisj1 | |- ( ( ( { A , B } i^i { D } ) = (/) /\ ( { C } i^i { D } ) = (/) ) <-> ( ( { A , B } u. { C } ) i^i { D } ) = (/) ) |
|
| 9 | 7 8 | sylib | |- ( ( A =/= D /\ B =/= D /\ C =/= D ) -> ( ( { A , B } u. { C } ) i^i { D } ) = (/) ) |
| 10 | 2 9 | eqtrid | |- ( ( A =/= D /\ B =/= D /\ C =/= D ) -> ( { A , B , C } i^i { D } ) = (/) ) |