This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The field of complex numbers is a function. The proof is much shorter than the proof of cnfldfunALT by using cnfldstr and structn0fun : in addition, it must be shown that (/) e/ CCfld . (Contributed by AV, 18-Nov-2021) Revise df-cnfld . (Revised by GG, 31-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cnfldfun | |- Fun CCfld |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnfldstr | |- CCfld Struct <. 1 , ; 1 3 >. |
|
| 2 | structn0fun | |- ( CCfld Struct <. 1 , ; 1 3 >. -> Fun ( CCfld \ { (/) } ) ) |
|
| 3 | fvex | |- ( Base ` ndx ) e. _V |
|
| 4 | cnex | |- CC e. _V |
|
| 5 | 3 4 | opnzi | |- <. ( Base ` ndx ) , CC >. =/= (/) |
| 6 | 5 | nesymi | |- -. (/) = <. ( Base ` ndx ) , CC >. |
| 7 | fvex | |- ( +g ` ndx ) e. _V |
|
| 8 | mpoaddex | |- ( u e. CC , v e. CC |-> ( u + v ) ) e. _V |
|
| 9 | 7 8 | opnzi | |- <. ( +g ` ndx ) , ( u e. CC , v e. CC |-> ( u + v ) ) >. =/= (/) |
| 10 | 9 | nesymi | |- -. (/) = <. ( +g ` ndx ) , ( u e. CC , v e. CC |-> ( u + v ) ) >. |
| 11 | fvex | |- ( .r ` ndx ) e. _V |
|
| 12 | mpomulex | |- ( u e. CC , v e. CC |-> ( u x. v ) ) e. _V |
|
| 13 | 11 12 | opnzi | |- <. ( .r ` ndx ) , ( u e. CC , v e. CC |-> ( u x. v ) ) >. =/= (/) |
| 14 | 13 | nesymi | |- -. (/) = <. ( .r ` ndx ) , ( u e. CC , v e. CC |-> ( u x. v ) ) >. |
| 15 | 3ioran | |- ( -. ( (/) = <. ( Base ` ndx ) , CC >. \/ (/) = <. ( +g ` ndx ) , ( u e. CC , v e. CC |-> ( u + v ) ) >. \/ (/) = <. ( .r ` ndx ) , ( u e. CC , v e. CC |-> ( u x. v ) ) >. ) <-> ( -. (/) = <. ( Base ` ndx ) , CC >. /\ -. (/) = <. ( +g ` ndx ) , ( u e. CC , v e. CC |-> ( u + v ) ) >. /\ -. (/) = <. ( .r ` ndx ) , ( u e. CC , v e. CC |-> ( u x. v ) ) >. ) ) |
|
| 16 | 0ex | |- (/) e. _V |
|
| 17 | 16 | eltp | |- ( (/) e. { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , ( u e. CC , v e. CC |-> ( u + v ) ) >. , <. ( .r ` ndx ) , ( u e. CC , v e. CC |-> ( u x. v ) ) >. } <-> ( (/) = <. ( Base ` ndx ) , CC >. \/ (/) = <. ( +g ` ndx ) , ( u e. CC , v e. CC |-> ( u + v ) ) >. \/ (/) = <. ( .r ` ndx ) , ( u e. CC , v e. CC |-> ( u x. v ) ) >. ) ) |
| 18 | 15 17 | xchnxbir | |- ( -. (/) e. { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , ( u e. CC , v e. CC |-> ( u + v ) ) >. , <. ( .r ` ndx ) , ( u e. CC , v e. CC |-> ( u x. v ) ) >. } <-> ( -. (/) = <. ( Base ` ndx ) , CC >. /\ -. (/) = <. ( +g ` ndx ) , ( u e. CC , v e. CC |-> ( u + v ) ) >. /\ -. (/) = <. ( .r ` ndx ) , ( u e. CC , v e. CC |-> ( u x. v ) ) >. ) ) |
| 19 | 6 10 14 18 | mpbir3an | |- -. (/) e. { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , ( u e. CC , v e. CC |-> ( u + v ) ) >. , <. ( .r ` ndx ) , ( u e. CC , v e. CC |-> ( u x. v ) ) >. } |
| 20 | fvex | |- ( *r ` ndx ) e. _V |
|
| 21 | cjf | |- * : CC --> CC |
|
| 22 | fex | |- ( ( * : CC --> CC /\ CC e. _V ) -> * e. _V ) |
|
| 23 | 21 4 22 | mp2an | |- * e. _V |
| 24 | 20 23 | opnzi | |- <. ( *r ` ndx ) , * >. =/= (/) |
| 25 | 24 | necomi | |- (/) =/= <. ( *r ` ndx ) , * >. |
| 26 | nelsn | |- ( (/) =/= <. ( *r ` ndx ) , * >. -> -. (/) e. { <. ( *r ` ndx ) , * >. } ) |
|
| 27 | 25 26 | ax-mp | |- -. (/) e. { <. ( *r ` ndx ) , * >. } |
| 28 | 19 27 | pm3.2i | |- ( -. (/) e. { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , ( u e. CC , v e. CC |-> ( u + v ) ) >. , <. ( .r ` ndx ) , ( u e. CC , v e. CC |-> ( u x. v ) ) >. } /\ -. (/) e. { <. ( *r ` ndx ) , * >. } ) |
| 29 | fvex | |- ( TopSet ` ndx ) e. _V |
|
| 30 | fvex | |- ( MetOpen ` ( abs o. - ) ) e. _V |
|
| 31 | 29 30 | opnzi | |- <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. =/= (/) |
| 32 | 31 | nesymi | |- -. (/) = <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. |
| 33 | fvex | |- ( le ` ndx ) e. _V |
|
| 34 | letsr | |- <_ e. TosetRel |
|
| 35 | 34 | elexi | |- <_ e. _V |
| 36 | 33 35 | opnzi | |- <. ( le ` ndx ) , <_ >. =/= (/) |
| 37 | 36 | nesymi | |- -. (/) = <. ( le ` ndx ) , <_ >. |
| 38 | fvex | |- ( dist ` ndx ) e. _V |
|
| 39 | absf | |- abs : CC --> RR |
|
| 40 | fex | |- ( ( abs : CC --> RR /\ CC e. _V ) -> abs e. _V ) |
|
| 41 | 39 4 40 | mp2an | |- abs e. _V |
| 42 | subf | |- - : ( CC X. CC ) --> CC |
|
| 43 | 4 4 | xpex | |- ( CC X. CC ) e. _V |
| 44 | fex | |- ( ( - : ( CC X. CC ) --> CC /\ ( CC X. CC ) e. _V ) -> - e. _V ) |
|
| 45 | 42 43 44 | mp2an | |- - e. _V |
| 46 | 41 45 | coex | |- ( abs o. - ) e. _V |
| 47 | 38 46 | opnzi | |- <. ( dist ` ndx ) , ( abs o. - ) >. =/= (/) |
| 48 | 47 | nesymi | |- -. (/) = <. ( dist ` ndx ) , ( abs o. - ) >. |
| 49 | 32 37 48 | 3pm3.2ni | |- -. ( (/) = <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. \/ (/) = <. ( le ` ndx ) , <_ >. \/ (/) = <. ( dist ` ndx ) , ( abs o. - ) >. ) |
| 50 | 16 | eltp | |- ( (/) e. { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } <-> ( (/) = <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. \/ (/) = <. ( le ` ndx ) , <_ >. \/ (/) = <. ( dist ` ndx ) , ( abs o. - ) >. ) ) |
| 51 | 49 50 | mtbir | |- -. (/) e. { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } |
| 52 | fvex | |- ( UnifSet ` ndx ) e. _V |
|
| 53 | fvex | |- ( metUnif ` ( abs o. - ) ) e. _V |
|
| 54 | 52 53 | opnzi | |- <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. =/= (/) |
| 55 | 54 | necomi | |- (/) =/= <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. |
| 56 | nelsn | |- ( (/) =/= <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. -> -. (/) e. { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) |
|
| 57 | 55 56 | ax-mp | |- -. (/) e. { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } |
| 58 | 51 57 | pm3.2i | |- ( -. (/) e. { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } /\ -. (/) e. { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) |
| 59 | 28 58 | pm3.2i | |- ( ( -. (/) e. { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , ( u e. CC , v e. CC |-> ( u + v ) ) >. , <. ( .r ` ndx ) , ( u e. CC , v e. CC |-> ( u x. v ) ) >. } /\ -. (/) e. { <. ( *r ` ndx ) , * >. } ) /\ ( -. (/) e. { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } /\ -. (/) e. { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) ) |
| 60 | ioran | |- ( -. ( ( (/) e. { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , ( u e. CC , v e. CC |-> ( u + v ) ) >. , <. ( .r ` ndx ) , ( u e. CC , v e. CC |-> ( u x. v ) ) >. } \/ (/) e. { <. ( *r ` ndx ) , * >. } ) \/ ( (/) e. { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } \/ (/) e. { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) ) <-> ( -. ( (/) e. { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , ( u e. CC , v e. CC |-> ( u + v ) ) >. , <. ( .r ` ndx ) , ( u e. CC , v e. CC |-> ( u x. v ) ) >. } \/ (/) e. { <. ( *r ` ndx ) , * >. } ) /\ -. ( (/) e. { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } \/ (/) e. { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) ) ) |
|
| 61 | ioran | |- ( -. ( (/) e. { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , ( u e. CC , v e. CC |-> ( u + v ) ) >. , <. ( .r ` ndx ) , ( u e. CC , v e. CC |-> ( u x. v ) ) >. } \/ (/) e. { <. ( *r ` ndx ) , * >. } ) <-> ( -. (/) e. { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , ( u e. CC , v e. CC |-> ( u + v ) ) >. , <. ( .r ` ndx ) , ( u e. CC , v e. CC |-> ( u x. v ) ) >. } /\ -. (/) e. { <. ( *r ` ndx ) , * >. } ) ) |
|
| 62 | ioran | |- ( -. ( (/) e. { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } \/ (/) e. { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) <-> ( -. (/) e. { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } /\ -. (/) e. { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) ) |
|
| 63 | 61 62 | anbi12i | |- ( ( -. ( (/) e. { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , ( u e. CC , v e. CC |-> ( u + v ) ) >. , <. ( .r ` ndx ) , ( u e. CC , v e. CC |-> ( u x. v ) ) >. } \/ (/) e. { <. ( *r ` ndx ) , * >. } ) /\ -. ( (/) e. { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } \/ (/) e. { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) ) <-> ( ( -. (/) e. { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , ( u e. CC , v e. CC |-> ( u + v ) ) >. , <. ( .r ` ndx ) , ( u e. CC , v e. CC |-> ( u x. v ) ) >. } /\ -. (/) e. { <. ( *r ` ndx ) , * >. } ) /\ ( -. (/) e. { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } /\ -. (/) e. { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) ) ) |
| 64 | 60 63 | bitri | |- ( -. ( ( (/) e. { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , ( u e. CC , v e. CC |-> ( u + v ) ) >. , <. ( .r ` ndx ) , ( u e. CC , v e. CC |-> ( u x. v ) ) >. } \/ (/) e. { <. ( *r ` ndx ) , * >. } ) \/ ( (/) e. { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } \/ (/) e. { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) ) <-> ( ( -. (/) e. { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , ( u e. CC , v e. CC |-> ( u + v ) ) >. , <. ( .r ` ndx ) , ( u e. CC , v e. CC |-> ( u x. v ) ) >. } /\ -. (/) e. { <. ( *r ` ndx ) , * >. } ) /\ ( -. (/) e. { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } /\ -. (/) e. { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) ) ) |
| 65 | 59 64 | mpbir | |- -. ( ( (/) e. { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , ( u e. CC , v e. CC |-> ( u + v ) ) >. , <. ( .r ` ndx ) , ( u e. CC , v e. CC |-> ( u x. v ) ) >. } \/ (/) e. { <. ( *r ` ndx ) , * >. } ) \/ ( (/) e. { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } \/ (/) e. { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) ) |
| 66 | df-cnfld | |- CCfld = ( ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , ( u e. CC , v e. CC |-> ( u + v ) ) >. , <. ( .r ` ndx ) , ( u e. CC , v e. CC |-> ( u x. v ) ) >. } u. { <. ( *r ` ndx ) , * >. } ) u. ( { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) ) |
|
| 67 | 66 | eleq2i | |- ( (/) e. CCfld <-> (/) e. ( ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , ( u e. CC , v e. CC |-> ( u + v ) ) >. , <. ( .r ` ndx ) , ( u e. CC , v e. CC |-> ( u x. v ) ) >. } u. { <. ( *r ` ndx ) , * >. } ) u. ( { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) ) ) |
| 68 | elun | |- ( (/) e. ( ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , ( u e. CC , v e. CC |-> ( u + v ) ) >. , <. ( .r ` ndx ) , ( u e. CC , v e. CC |-> ( u x. v ) ) >. } u. { <. ( *r ` ndx ) , * >. } ) u. ( { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) ) <-> ( (/) e. ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , ( u e. CC , v e. CC |-> ( u + v ) ) >. , <. ( .r ` ndx ) , ( u e. CC , v e. CC |-> ( u x. v ) ) >. } u. { <. ( *r ` ndx ) , * >. } ) \/ (/) e. ( { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) ) ) |
|
| 69 | elun | |- ( (/) e. ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , ( u e. CC , v e. CC |-> ( u + v ) ) >. , <. ( .r ` ndx ) , ( u e. CC , v e. CC |-> ( u x. v ) ) >. } u. { <. ( *r ` ndx ) , * >. } ) <-> ( (/) e. { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , ( u e. CC , v e. CC |-> ( u + v ) ) >. , <. ( .r ` ndx ) , ( u e. CC , v e. CC |-> ( u x. v ) ) >. } \/ (/) e. { <. ( *r ` ndx ) , * >. } ) ) |
|
| 70 | elun | |- ( (/) e. ( { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) <-> ( (/) e. { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } \/ (/) e. { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) ) |
|
| 71 | 69 70 | orbi12i | |- ( ( (/) e. ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , ( u e. CC , v e. CC |-> ( u + v ) ) >. , <. ( .r ` ndx ) , ( u e. CC , v e. CC |-> ( u x. v ) ) >. } u. { <. ( *r ` ndx ) , * >. } ) \/ (/) e. ( { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) ) <-> ( ( (/) e. { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , ( u e. CC , v e. CC |-> ( u + v ) ) >. , <. ( .r ` ndx ) , ( u e. CC , v e. CC |-> ( u x. v ) ) >. } \/ (/) e. { <. ( *r ` ndx ) , * >. } ) \/ ( (/) e. { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } \/ (/) e. { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) ) ) |
| 72 | 67 68 71 | 3bitri | |- ( (/) e. CCfld <-> ( ( (/) e. { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , ( u e. CC , v e. CC |-> ( u + v ) ) >. , <. ( .r ` ndx ) , ( u e. CC , v e. CC |-> ( u x. v ) ) >. } \/ (/) e. { <. ( *r ` ndx ) , * >. } ) \/ ( (/) e. { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } \/ (/) e. { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) ) ) |
| 73 | 65 72 | mtbir | |- -. (/) e. CCfld |
| 74 | disjsn | |- ( ( CCfld i^i { (/) } ) = (/) <-> -. (/) e. CCfld ) |
|
| 75 | 73 74 | mpbir | |- ( CCfld i^i { (/) } ) = (/) |
| 76 | disjdif2 | |- ( ( CCfld i^i { (/) } ) = (/) -> ( CCfld \ { (/) } ) = CCfld ) |
|
| 77 | 75 76 | ax-mp | |- ( CCfld \ { (/) } ) = CCfld |
| 78 | 77 | funeqi | |- ( Fun ( CCfld \ { (/) } ) <-> Fun CCfld ) |
| 79 | 2 78 | sylib | |- ( CCfld Struct <. 1 , ; 1 3 >. -> Fun CCfld ) |
| 80 | 1 79 | ax-mp | |- Fun CCfld |