This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The index of the slot for the uniform set is not the index of other slots. Formerly part of proof for cnfldfunALT . (Contributed by AV, 10-Nov-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | slotsdifunifndx | |- ( ( ( +g ` ndx ) =/= ( UnifSet ` ndx ) /\ ( .r ` ndx ) =/= ( UnifSet ` ndx ) /\ ( *r ` ndx ) =/= ( UnifSet ` ndx ) ) /\ ( ( le ` ndx ) =/= ( UnifSet ` ndx ) /\ ( dist ` ndx ) =/= ( UnifSet ` ndx ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2re | |- 2 e. RR |
|
| 2 | 1nn | |- 1 e. NN |
|
| 3 | 3nn0 | |- 3 e. NN0 |
|
| 4 | 2nn0 | |- 2 e. NN0 |
|
| 5 | 2lt10 | |- 2 < ; 1 0 |
|
| 6 | 2 3 4 5 | declti | |- 2 < ; 1 3 |
| 7 | 1 6 | ltneii | |- 2 =/= ; 1 3 |
| 8 | plusgndx | |- ( +g ` ndx ) = 2 |
|
| 9 | unifndx | |- ( UnifSet ` ndx ) = ; 1 3 |
|
| 10 | 8 9 | neeq12i | |- ( ( +g ` ndx ) =/= ( UnifSet ` ndx ) <-> 2 =/= ; 1 3 ) |
| 11 | 7 10 | mpbir | |- ( +g ` ndx ) =/= ( UnifSet ` ndx ) |
| 12 | 3re | |- 3 e. RR |
|
| 13 | 3lt10 | |- 3 < ; 1 0 |
|
| 14 | 2 3 3 13 | declti | |- 3 < ; 1 3 |
| 15 | 12 14 | ltneii | |- 3 =/= ; 1 3 |
| 16 | mulrndx | |- ( .r ` ndx ) = 3 |
|
| 17 | 16 9 | neeq12i | |- ( ( .r ` ndx ) =/= ( UnifSet ` ndx ) <-> 3 =/= ; 1 3 ) |
| 18 | 15 17 | mpbir | |- ( .r ` ndx ) =/= ( UnifSet ` ndx ) |
| 19 | 4re | |- 4 e. RR |
|
| 20 | 4nn0 | |- 4 e. NN0 |
|
| 21 | 4lt10 | |- 4 < ; 1 0 |
|
| 22 | 2 3 20 21 | declti | |- 4 < ; 1 3 |
| 23 | 19 22 | ltneii | |- 4 =/= ; 1 3 |
| 24 | starvndx | |- ( *r ` ndx ) = 4 |
|
| 25 | 24 9 | neeq12i | |- ( ( *r ` ndx ) =/= ( UnifSet ` ndx ) <-> 4 =/= ; 1 3 ) |
| 26 | 23 25 | mpbir | |- ( *r ` ndx ) =/= ( UnifSet ` ndx ) |
| 27 | 11 18 26 | 3pm3.2i | |- ( ( +g ` ndx ) =/= ( UnifSet ` ndx ) /\ ( .r ` ndx ) =/= ( UnifSet ` ndx ) /\ ( *r ` ndx ) =/= ( UnifSet ` ndx ) ) |
| 28 | 10re | |- ; 1 0 e. RR |
|
| 29 | 1nn0 | |- 1 e. NN0 |
|
| 30 | 0nn0 | |- 0 e. NN0 |
|
| 31 | 3nn | |- 3 e. NN |
|
| 32 | 3pos | |- 0 < 3 |
|
| 33 | 29 30 31 32 | declt | |- ; 1 0 < ; 1 3 |
| 34 | 28 33 | ltneii | |- ; 1 0 =/= ; 1 3 |
| 35 | plendx | |- ( le ` ndx ) = ; 1 0 |
|
| 36 | 35 9 | neeq12i | |- ( ( le ` ndx ) =/= ( UnifSet ` ndx ) <-> ; 1 0 =/= ; 1 3 ) |
| 37 | 34 36 | mpbir | |- ( le ` ndx ) =/= ( UnifSet ` ndx ) |
| 38 | 2nn | |- 2 e. NN |
|
| 39 | 29 38 | decnncl | |- ; 1 2 e. NN |
| 40 | 39 | nnrei | |- ; 1 2 e. RR |
| 41 | 2lt3 | |- 2 < 3 |
|
| 42 | 29 4 31 41 | declt | |- ; 1 2 < ; 1 3 |
| 43 | 40 42 | ltneii | |- ; 1 2 =/= ; 1 3 |
| 44 | dsndx | |- ( dist ` ndx ) = ; 1 2 |
|
| 45 | 44 9 | neeq12i | |- ( ( dist ` ndx ) =/= ( UnifSet ` ndx ) <-> ; 1 2 =/= ; 1 3 ) |
| 46 | 43 45 | mpbir | |- ( dist ` ndx ) =/= ( UnifSet ` ndx ) |
| 47 | 37 46 | pm3.2i | |- ( ( le ` ndx ) =/= ( UnifSet ` ndx ) /\ ( dist ` ndx ) =/= ( UnifSet ` ndx ) ) |
| 48 | 27 47 | pm3.2i | |- ( ( ( +g ` ndx ) =/= ( UnifSet ` ndx ) /\ ( .r ` ndx ) =/= ( UnifSet ` ndx ) /\ ( *r ` ndx ) =/= ( UnifSet ` ndx ) ) /\ ( ( le ` ndx ) =/= ( UnifSet ` ndx ) /\ ( dist ` ndx ) =/= ( UnifSet ` ndx ) ) ) |