This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Obsolete version of df-cnfld as of 27-Apr-2025. (Contributed by Stefan O'Rear, 27-Nov-2014) (Revised by Thierry Arnoux, 15-Dec-2017) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfcnfldOLD | |- CCfld = ( ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } u. { <. ( *r ` ndx ) , * >. } ) u. ( { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-cnfld | |- CCfld = ( ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , ( u e. CC , v e. CC |-> ( u + v ) ) >. , <. ( .r ` ndx ) , ( u e. CC , v e. CC |-> ( u x. v ) ) >. } u. { <. ( *r ` ndx ) , * >. } ) u. ( { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) ) |
|
| 2 | eqidd | |- ( T. -> <. ( Base ` ndx ) , CC >. = <. ( Base ` ndx ) , CC >. ) |
|
| 3 | ax-addf | |- + : ( CC X. CC ) --> CC |
|
| 4 | ffn | |- ( + : ( CC X. CC ) --> CC -> + Fn ( CC X. CC ) ) |
|
| 5 | 3 4 | ax-mp | |- + Fn ( CC X. CC ) |
| 6 | fnov | |- ( + Fn ( CC X. CC ) <-> + = ( u e. CC , v e. CC |-> ( u + v ) ) ) |
|
| 7 | 5 6 | mpbi | |- + = ( u e. CC , v e. CC |-> ( u + v ) ) |
| 8 | eqcom | |- ( + = ( u e. CC , v e. CC |-> ( u + v ) ) <-> ( u e. CC , v e. CC |-> ( u + v ) ) = + ) |
|
| 9 | 7 8 | mpbi | |- ( u e. CC , v e. CC |-> ( u + v ) ) = + |
| 10 | 9 | opeq2i | |- <. ( +g ` ndx ) , ( u e. CC , v e. CC |-> ( u + v ) ) >. = <. ( +g ` ndx ) , + >. |
| 11 | 10 | a1i | |- ( T. -> <. ( +g ` ndx ) , ( u e. CC , v e. CC |-> ( u + v ) ) >. = <. ( +g ` ndx ) , + >. ) |
| 12 | ax-mulf | |- x. : ( CC X. CC ) --> CC |
|
| 13 | ffn | |- ( x. : ( CC X. CC ) --> CC -> x. Fn ( CC X. CC ) ) |
|
| 14 | 12 13 | ax-mp | |- x. Fn ( CC X. CC ) |
| 15 | fnov | |- ( x. Fn ( CC X. CC ) <-> x. = ( u e. CC , v e. CC |-> ( u x. v ) ) ) |
|
| 16 | 14 15 | mpbi | |- x. = ( u e. CC , v e. CC |-> ( u x. v ) ) |
| 17 | eqcom | |- ( x. = ( u e. CC , v e. CC |-> ( u x. v ) ) <-> ( u e. CC , v e. CC |-> ( u x. v ) ) = x. ) |
|
| 18 | 16 17 | mpbi | |- ( u e. CC , v e. CC |-> ( u x. v ) ) = x. |
| 19 | 18 | opeq2i | |- <. ( .r ` ndx ) , ( u e. CC , v e. CC |-> ( u x. v ) ) >. = <. ( .r ` ndx ) , x. >. |
| 20 | 19 | a1i | |- ( T. -> <. ( .r ` ndx ) , ( u e. CC , v e. CC |-> ( u x. v ) ) >. = <. ( .r ` ndx ) , x. >. ) |
| 21 | 2 11 20 | tpeq123d | |- ( T. -> { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , ( u e. CC , v e. CC |-> ( u + v ) ) >. , <. ( .r ` ndx ) , ( u e. CC , v e. CC |-> ( u x. v ) ) >. } = { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } ) |
| 22 | 21 | mptru | |- { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , ( u e. CC , v e. CC |-> ( u + v ) ) >. , <. ( .r ` ndx ) , ( u e. CC , v e. CC |-> ( u x. v ) ) >. } = { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } |
| 23 | 22 | uneq1i | |- ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , ( u e. CC , v e. CC |-> ( u + v ) ) >. , <. ( .r ` ndx ) , ( u e. CC , v e. CC |-> ( u x. v ) ) >. } u. { <. ( *r ` ndx ) , * >. } ) = ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } u. { <. ( *r ` ndx ) , * >. } ) |
| 24 | 23 | uneq1i | |- ( ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , ( u e. CC , v e. CC |-> ( u + v ) ) >. , <. ( .r ` ndx ) , ( u e. CC , v e. CC |-> ( u x. v ) ) >. } u. { <. ( *r ` ndx ) , * >. } ) u. ( { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) ) = ( ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } u. { <. ( *r ` ndx ) , * >. } ) u. ( { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) ) |
| 25 | 1 24 | eqtri | |- CCfld = ( ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } u. { <. ( *r ` ndx ) , * >. } ) u. ( { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) ) |