This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A function with a domain of three elements. (Contributed by NM, 14-Sep-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | funtp.1 | |- A e. _V |
|
| funtp.2 | |- B e. _V |
||
| funtp.3 | |- C e. _V |
||
| funtp.4 | |- D e. _V |
||
| funtp.5 | |- E e. _V |
||
| funtp.6 | |- F e. _V |
||
| Assertion | funtp | |- ( ( A =/= B /\ A =/= C /\ B =/= C ) -> Fun { <. A , D >. , <. B , E >. , <. C , F >. } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funtp.1 | |- A e. _V |
|
| 2 | funtp.2 | |- B e. _V |
|
| 3 | funtp.3 | |- C e. _V |
|
| 4 | funtp.4 | |- D e. _V |
|
| 5 | funtp.5 | |- E e. _V |
|
| 6 | funtp.6 | |- F e. _V |
|
| 7 | 1 2 4 5 | funpr | |- ( A =/= B -> Fun { <. A , D >. , <. B , E >. } ) |
| 8 | 3 6 | funsn | |- Fun { <. C , F >. } |
| 9 | 7 8 | jctir | |- ( A =/= B -> ( Fun { <. A , D >. , <. B , E >. } /\ Fun { <. C , F >. } ) ) |
| 10 | 4 5 | dmprop | |- dom { <. A , D >. , <. B , E >. } = { A , B } |
| 11 | df-pr | |- { A , B } = ( { A } u. { B } ) |
|
| 12 | 10 11 | eqtri | |- dom { <. A , D >. , <. B , E >. } = ( { A } u. { B } ) |
| 13 | 6 | dmsnop | |- dom { <. C , F >. } = { C } |
| 14 | 12 13 | ineq12i | |- ( dom { <. A , D >. , <. B , E >. } i^i dom { <. C , F >. } ) = ( ( { A } u. { B } ) i^i { C } ) |
| 15 | disjsn2 | |- ( A =/= C -> ( { A } i^i { C } ) = (/) ) |
|
| 16 | disjsn2 | |- ( B =/= C -> ( { B } i^i { C } ) = (/) ) |
|
| 17 | 15 16 | anim12i | |- ( ( A =/= C /\ B =/= C ) -> ( ( { A } i^i { C } ) = (/) /\ ( { B } i^i { C } ) = (/) ) ) |
| 18 | undisj1 | |- ( ( ( { A } i^i { C } ) = (/) /\ ( { B } i^i { C } ) = (/) ) <-> ( ( { A } u. { B } ) i^i { C } ) = (/) ) |
|
| 19 | 17 18 | sylib | |- ( ( A =/= C /\ B =/= C ) -> ( ( { A } u. { B } ) i^i { C } ) = (/) ) |
| 20 | 14 19 | eqtrid | |- ( ( A =/= C /\ B =/= C ) -> ( dom { <. A , D >. , <. B , E >. } i^i dom { <. C , F >. } ) = (/) ) |
| 21 | funun | |- ( ( ( Fun { <. A , D >. , <. B , E >. } /\ Fun { <. C , F >. } ) /\ ( dom { <. A , D >. , <. B , E >. } i^i dom { <. C , F >. } ) = (/) ) -> Fun ( { <. A , D >. , <. B , E >. } u. { <. C , F >. } ) ) |
|
| 22 | 9 20 21 | syl2an | |- ( ( A =/= B /\ ( A =/= C /\ B =/= C ) ) -> Fun ( { <. A , D >. , <. B , E >. } u. { <. C , F >. } ) ) |
| 23 | 22 | 3impb | |- ( ( A =/= B /\ A =/= C /\ B =/= C ) -> Fun ( { <. A , D >. , <. B , E >. } u. { <. C , F >. } ) ) |
| 24 | df-tp | |- { <. A , D >. , <. B , E >. , <. C , F >. } = ( { <. A , D >. , <. B , E >. } u. { <. C , F >. } ) |
|
| 25 | 24 | funeqi | |- ( Fun { <. A , D >. , <. B , E >. , <. C , F >. } <-> Fun ( { <. A , D >. , <. B , E >. } u. { <. C , F >. } ) ) |
| 26 | 23 25 | sylibr | |- ( ( A =/= B /\ A =/= C /\ B =/= C ) -> Fun { <. A , D >. , <. B , E >. , <. C , F >. } ) |