This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The complex numbers form a *-ring. (Contributed by Mario Carneiro, 6-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cnsrng | |- CCfld e. *Ring |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnfldbas | |- CC = ( Base ` CCfld ) |
|
| 2 | 1 | a1i | |- ( T. -> CC = ( Base ` CCfld ) ) |
| 3 | cnfldadd | |- + = ( +g ` CCfld ) |
|
| 4 | 3 | a1i | |- ( T. -> + = ( +g ` CCfld ) ) |
| 5 | cnfldmul | |- x. = ( .r ` CCfld ) |
|
| 6 | 5 | a1i | |- ( T. -> x. = ( .r ` CCfld ) ) |
| 7 | cnfldcj | |- * = ( *r ` CCfld ) |
|
| 8 | 7 | a1i | |- ( T. -> * = ( *r ` CCfld ) ) |
| 9 | cnring | |- CCfld e. Ring |
|
| 10 | 9 | a1i | |- ( T. -> CCfld e. Ring ) |
| 11 | cjcl | |- ( x e. CC -> ( * ` x ) e. CC ) |
|
| 12 | 11 | adantl | |- ( ( T. /\ x e. CC ) -> ( * ` x ) e. CC ) |
| 13 | cjadd | |- ( ( x e. CC /\ y e. CC ) -> ( * ` ( x + y ) ) = ( ( * ` x ) + ( * ` y ) ) ) |
|
| 14 | 13 | 3adant1 | |- ( ( T. /\ x e. CC /\ y e. CC ) -> ( * ` ( x + y ) ) = ( ( * ` x ) + ( * ` y ) ) ) |
| 15 | mulcom | |- ( ( x e. CC /\ y e. CC ) -> ( x x. y ) = ( y x. x ) ) |
|
| 16 | 15 | fveq2d | |- ( ( x e. CC /\ y e. CC ) -> ( * ` ( x x. y ) ) = ( * ` ( y x. x ) ) ) |
| 17 | cjmul | |- ( ( y e. CC /\ x e. CC ) -> ( * ` ( y x. x ) ) = ( ( * ` y ) x. ( * ` x ) ) ) |
|
| 18 | 17 | ancoms | |- ( ( x e. CC /\ y e. CC ) -> ( * ` ( y x. x ) ) = ( ( * ` y ) x. ( * ` x ) ) ) |
| 19 | 16 18 | eqtrd | |- ( ( x e. CC /\ y e. CC ) -> ( * ` ( x x. y ) ) = ( ( * ` y ) x. ( * ` x ) ) ) |
| 20 | 19 | 3adant1 | |- ( ( T. /\ x e. CC /\ y e. CC ) -> ( * ` ( x x. y ) ) = ( ( * ` y ) x. ( * ` x ) ) ) |
| 21 | cjcj | |- ( x e. CC -> ( * ` ( * ` x ) ) = x ) |
|
| 22 | 21 | adantl | |- ( ( T. /\ x e. CC ) -> ( * ` ( * ` x ) ) = x ) |
| 23 | 2 4 6 8 10 12 14 20 22 | issrngd | |- ( T. -> CCfld e. *Ring ) |
| 24 | 23 | mptru | |- CCfld e. *Ring |