This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Composition of continuous functions. A generalization of cncfmpt1f to arbitrary domains. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cncfcompt.bcn | |- ( ph -> ( x e. A |-> B ) e. ( A -cn-> C ) ) |
|
| cncfcompt.f | |- ( ph -> F e. ( C -cn-> D ) ) |
||
| Assertion | cncfcompt | |- ( ph -> ( x e. A |-> ( F ` B ) ) e. ( A -cn-> D ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cncfcompt.bcn | |- ( ph -> ( x e. A |-> B ) e. ( A -cn-> C ) ) |
|
| 2 | cncfcompt.f | |- ( ph -> F e. ( C -cn-> D ) ) |
|
| 3 | cncff | |- ( F e. ( C -cn-> D ) -> F : C --> D ) |
|
| 4 | 2 3 | syl | |- ( ph -> F : C --> D ) |
| 5 | 4 | adantr | |- ( ( ph /\ x e. A ) -> F : C --> D ) |
| 6 | cncff | |- ( ( x e. A |-> B ) e. ( A -cn-> C ) -> ( x e. A |-> B ) : A --> C ) |
|
| 7 | 1 6 | syl | |- ( ph -> ( x e. A |-> B ) : A --> C ) |
| 8 | 7 | fvmptelcdm | |- ( ( ph /\ x e. A ) -> B e. C ) |
| 9 | 5 8 | ffvelcdmd | |- ( ( ph /\ x e. A ) -> ( F ` B ) e. D ) |
| 10 | 9 | fmpttd | |- ( ph -> ( x e. A |-> ( F ` B ) ) : A --> D ) |
| 11 | cncfrss2 | |- ( F e. ( C -cn-> D ) -> D C_ CC ) |
|
| 12 | 2 11 | syl | |- ( ph -> D C_ CC ) |
| 13 | eqidd | |- ( ph -> ( x e. A |-> B ) = ( x e. A |-> B ) ) |
|
| 14 | 4 | feqmptd | |- ( ph -> F = ( y e. C |-> ( F ` y ) ) ) |
| 15 | fveq2 | |- ( y = B -> ( F ` y ) = ( F ` B ) ) |
|
| 16 | 8 13 14 15 | fmptco | |- ( ph -> ( F o. ( x e. A |-> B ) ) = ( x e. A |-> ( F ` B ) ) ) |
| 17 | ssid | |- CC C_ CC |
|
| 18 | cncfss | |- ( ( D C_ CC /\ CC C_ CC ) -> ( C -cn-> D ) C_ ( C -cn-> CC ) ) |
|
| 19 | 12 17 18 | sylancl | |- ( ph -> ( C -cn-> D ) C_ ( C -cn-> CC ) ) |
| 20 | 19 2 | sseldd | |- ( ph -> F e. ( C -cn-> CC ) ) |
| 21 | 1 20 | cncfco | |- ( ph -> ( F o. ( x e. A |-> B ) ) e. ( A -cn-> CC ) ) |
| 22 | 16 21 | eqeltrrd | |- ( ph -> ( x e. A |-> ( F ` B ) ) e. ( A -cn-> CC ) ) |
| 23 | cncfcdm | |- ( ( D C_ CC /\ ( x e. A |-> ( F ` B ) ) e. ( A -cn-> CC ) ) -> ( ( x e. A |-> ( F ` B ) ) e. ( A -cn-> D ) <-> ( x e. A |-> ( F ` B ) ) : A --> D ) ) |
|
| 24 | 12 22 23 | syl2anc | |- ( ph -> ( ( x e. A |-> ( F ` B ) ) e. ( A -cn-> D ) <-> ( x e. A |-> ( F ` B ) ) : A --> D ) ) |
| 25 | 10 24 | mpbird | |- ( ph -> ( x e. A |-> ( F ` B ) ) e. ( A -cn-> D ) ) |