This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Composition of continuous functions. A generalization of cncfmpt1f to arbitrary domains. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cncfcompt.bcn | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ ( 𝐴 –cn→ 𝐶 ) ) | |
| cncfcompt.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝐶 –cn→ 𝐷 ) ) | ||
| Assertion | cncfcompt | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝐵 ) ) ∈ ( 𝐴 –cn→ 𝐷 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cncfcompt.bcn | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ ( 𝐴 –cn→ 𝐶 ) ) | |
| 2 | cncfcompt.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝐶 –cn→ 𝐷 ) ) | |
| 3 | cncff | ⊢ ( 𝐹 ∈ ( 𝐶 –cn→ 𝐷 ) → 𝐹 : 𝐶 ⟶ 𝐷 ) | |
| 4 | 2 3 | syl | ⊢ ( 𝜑 → 𝐹 : 𝐶 ⟶ 𝐷 ) |
| 5 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐹 : 𝐶 ⟶ 𝐷 ) |
| 6 | cncff | ⊢ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ ( 𝐴 –cn→ 𝐶 ) → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) : 𝐴 ⟶ 𝐶 ) | |
| 7 | 1 6 | syl | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) : 𝐴 ⟶ 𝐶 ) |
| 8 | 7 | fvmptelcdm | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝐶 ) |
| 9 | 5 8 | ffvelcdmd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ‘ 𝐵 ) ∈ 𝐷 ) |
| 10 | 9 | fmpttd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝐵 ) ) : 𝐴 ⟶ 𝐷 ) |
| 11 | cncfrss2 | ⊢ ( 𝐹 ∈ ( 𝐶 –cn→ 𝐷 ) → 𝐷 ⊆ ℂ ) | |
| 12 | 2 11 | syl | ⊢ ( 𝜑 → 𝐷 ⊆ ℂ ) |
| 13 | eqidd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) | |
| 14 | 4 | feqmptd | ⊢ ( 𝜑 → 𝐹 = ( 𝑦 ∈ 𝐶 ↦ ( 𝐹 ‘ 𝑦 ) ) ) |
| 15 | fveq2 | ⊢ ( 𝑦 = 𝐵 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝐵 ) ) | |
| 16 | 8 13 14 15 | fmptco | ⊢ ( 𝜑 → ( 𝐹 ∘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) = ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝐵 ) ) ) |
| 17 | ssid | ⊢ ℂ ⊆ ℂ | |
| 18 | cncfss | ⊢ ( ( 𝐷 ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( 𝐶 –cn→ 𝐷 ) ⊆ ( 𝐶 –cn→ ℂ ) ) | |
| 19 | 12 17 18 | sylancl | ⊢ ( 𝜑 → ( 𝐶 –cn→ 𝐷 ) ⊆ ( 𝐶 –cn→ ℂ ) ) |
| 20 | 19 2 | sseldd | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝐶 –cn→ ℂ ) ) |
| 21 | 1 20 | cncfco | ⊢ ( 𝜑 → ( 𝐹 ∘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ∈ ( 𝐴 –cn→ ℂ ) ) |
| 22 | 16 21 | eqeltrrd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝐵 ) ) ∈ ( 𝐴 –cn→ ℂ ) ) |
| 23 | cncfcdm | ⊢ ( ( 𝐷 ⊆ ℂ ∧ ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝐵 ) ) ∈ ( 𝐴 –cn→ ℂ ) ) → ( ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝐵 ) ) ∈ ( 𝐴 –cn→ 𝐷 ) ↔ ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝐵 ) ) : 𝐴 ⟶ 𝐷 ) ) | |
| 24 | 12 22 23 | syl2anc | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝐵 ) ) ∈ ( 𝐴 –cn→ 𝐷 ) ↔ ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝐵 ) ) : 𝐴 ⟶ 𝐷 ) ) |
| 25 | 10 24 | mpbird | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝐵 ) ) ∈ ( 𝐴 –cn→ 𝐷 ) ) |