This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Obtaining a closed walk (as word) by appending the first symbol to the word representing a walk. (Contributed by AV, 28-Sep-2018) (Revised by AV, 25-Apr-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | clwwlkf1o.d | |- D = { w e. ( N WWalksN G ) | ( lastS ` w ) = ( w ` 0 ) } |
|
| Assertion | clwwlkel | |- ( ( N e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) /\ ( A. i e. ( 0 ..^ ( N - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` P ) , ( P ` 0 ) } e. ( Edg ` G ) ) ) -> ( P ++ <" ( P ` 0 ) "> ) e. D ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clwwlkf1o.d | |- D = { w e. ( N WWalksN G ) | ( lastS ` w ) = ( w ` 0 ) } |
|
| 2 | ccatws1n0 | |- ( P e. Word ( Vtx ` G ) -> ( P ++ <" ( P ` 0 ) "> ) =/= (/) ) |
|
| 3 | 2 | adantr | |- ( ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) -> ( P ++ <" ( P ` 0 ) "> ) =/= (/) ) |
| 4 | 3 | 3ad2ant2 | |- ( ( N e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) /\ ( A. i e. ( 0 ..^ ( N - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` P ) , ( P ` 0 ) } e. ( Edg ` G ) ) ) -> ( P ++ <" ( P ` 0 ) "> ) =/= (/) ) |
| 5 | simprl | |- ( ( N e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) ) -> P e. Word ( Vtx ` G ) ) |
|
| 6 | fstwrdne0 | |- ( ( N e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) ) -> ( P ` 0 ) e. ( Vtx ` G ) ) |
|
| 7 | 6 | s1cld | |- ( ( N e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) ) -> <" ( P ` 0 ) "> e. Word ( Vtx ` G ) ) |
| 8 | ccatcl | |- ( ( P e. Word ( Vtx ` G ) /\ <" ( P ` 0 ) "> e. Word ( Vtx ` G ) ) -> ( P ++ <" ( P ` 0 ) "> ) e. Word ( Vtx ` G ) ) |
|
| 9 | 5 7 8 | syl2anc | |- ( ( N e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) ) -> ( P ++ <" ( P ` 0 ) "> ) e. Word ( Vtx ` G ) ) |
| 10 | 9 | 3adant3 | |- ( ( N e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) /\ ( A. i e. ( 0 ..^ ( N - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` P ) , ( P ` 0 ) } e. ( Edg ` G ) ) ) -> ( P ++ <" ( P ` 0 ) "> ) e. Word ( Vtx ` G ) ) |
| 11 | 5 | adantr | |- ( ( ( N e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) ) /\ i e. ( 0 ..^ ( N - 1 ) ) ) -> P e. Word ( Vtx ` G ) ) |
| 12 | 7 | adantr | |- ( ( ( N e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) ) /\ i e. ( 0 ..^ ( N - 1 ) ) ) -> <" ( P ` 0 ) "> e. Word ( Vtx ` G ) ) |
| 13 | elfzonn0 | |- ( i e. ( 0 ..^ ( N - 1 ) ) -> i e. NN0 ) |
|
| 14 | 13 | adantl | |- ( ( N e. NN /\ i e. ( 0 ..^ ( N - 1 ) ) ) -> i e. NN0 ) |
| 15 | nnz | |- ( N e. NN -> N e. ZZ ) |
|
| 16 | 15 | adantr | |- ( ( N e. NN /\ i e. ( 0 ..^ ( N - 1 ) ) ) -> N e. ZZ ) |
| 17 | elfzo0 | |- ( i e. ( 0 ..^ ( N - 1 ) ) <-> ( i e. NN0 /\ ( N - 1 ) e. NN /\ i < ( N - 1 ) ) ) |
|
| 18 | nn0re | |- ( i e. NN0 -> i e. RR ) |
|
| 19 | 18 | adantr | |- ( ( i e. NN0 /\ N e. NN ) -> i e. RR ) |
| 20 | nnre | |- ( N e. NN -> N e. RR ) |
|
| 21 | peano2rem | |- ( N e. RR -> ( N - 1 ) e. RR ) |
|
| 22 | 20 21 | syl | |- ( N e. NN -> ( N - 1 ) e. RR ) |
| 23 | 22 | adantl | |- ( ( i e. NN0 /\ N e. NN ) -> ( N - 1 ) e. RR ) |
| 24 | 20 | adantl | |- ( ( i e. NN0 /\ N e. NN ) -> N e. RR ) |
| 25 | 19 23 24 | 3jca | |- ( ( i e. NN0 /\ N e. NN ) -> ( i e. RR /\ ( N - 1 ) e. RR /\ N e. RR ) ) |
| 26 | 25 | adantr | |- ( ( ( i e. NN0 /\ N e. NN ) /\ i < ( N - 1 ) ) -> ( i e. RR /\ ( N - 1 ) e. RR /\ N e. RR ) ) |
| 27 | 20 | ltm1d | |- ( N e. NN -> ( N - 1 ) < N ) |
| 28 | 27 | adantl | |- ( ( i e. NN0 /\ N e. NN ) -> ( N - 1 ) < N ) |
| 29 | 28 | anim1ci | |- ( ( ( i e. NN0 /\ N e. NN ) /\ i < ( N - 1 ) ) -> ( i < ( N - 1 ) /\ ( N - 1 ) < N ) ) |
| 30 | lttr | |- ( ( i e. RR /\ ( N - 1 ) e. RR /\ N e. RR ) -> ( ( i < ( N - 1 ) /\ ( N - 1 ) < N ) -> i < N ) ) |
|
| 31 | 26 29 30 | sylc | |- ( ( ( i e. NN0 /\ N e. NN ) /\ i < ( N - 1 ) ) -> i < N ) |
| 32 | 31 | ex | |- ( ( i e. NN0 /\ N e. NN ) -> ( i < ( N - 1 ) -> i < N ) ) |
| 33 | 32 | impancom | |- ( ( i e. NN0 /\ i < ( N - 1 ) ) -> ( N e. NN -> i < N ) ) |
| 34 | 33 | 3adant2 | |- ( ( i e. NN0 /\ ( N - 1 ) e. NN /\ i < ( N - 1 ) ) -> ( N e. NN -> i < N ) ) |
| 35 | 17 34 | sylbi | |- ( i e. ( 0 ..^ ( N - 1 ) ) -> ( N e. NN -> i < N ) ) |
| 36 | 35 | impcom | |- ( ( N e. NN /\ i e. ( 0 ..^ ( N - 1 ) ) ) -> i < N ) |
| 37 | elfzo0z | |- ( i e. ( 0 ..^ N ) <-> ( i e. NN0 /\ N e. ZZ /\ i < N ) ) |
|
| 38 | 14 16 36 37 | syl3anbrc | |- ( ( N e. NN /\ i e. ( 0 ..^ ( N - 1 ) ) ) -> i e. ( 0 ..^ N ) ) |
| 39 | 38 | adantlr | |- ( ( ( N e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) ) /\ i e. ( 0 ..^ ( N - 1 ) ) ) -> i e. ( 0 ..^ N ) ) |
| 40 | oveq2 | |- ( ( # ` P ) = N -> ( 0 ..^ ( # ` P ) ) = ( 0 ..^ N ) ) |
|
| 41 | 40 | eleq2d | |- ( ( # ` P ) = N -> ( i e. ( 0 ..^ ( # ` P ) ) <-> i e. ( 0 ..^ N ) ) ) |
| 42 | 41 | ad2antll | |- ( ( N e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) ) -> ( i e. ( 0 ..^ ( # ` P ) ) <-> i e. ( 0 ..^ N ) ) ) |
| 43 | 42 | adantr | |- ( ( ( N e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) ) /\ i e. ( 0 ..^ ( N - 1 ) ) ) -> ( i e. ( 0 ..^ ( # ` P ) ) <-> i e. ( 0 ..^ N ) ) ) |
| 44 | 39 43 | mpbird | |- ( ( ( N e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) ) /\ i e. ( 0 ..^ ( N - 1 ) ) ) -> i e. ( 0 ..^ ( # ` P ) ) ) |
| 45 | ccatval1 | |- ( ( P e. Word ( Vtx ` G ) /\ <" ( P ` 0 ) "> e. Word ( Vtx ` G ) /\ i e. ( 0 ..^ ( # ` P ) ) ) -> ( ( P ++ <" ( P ` 0 ) "> ) ` i ) = ( P ` i ) ) |
|
| 46 | 11 12 44 45 | syl3anc | |- ( ( ( N e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) ) /\ i e. ( 0 ..^ ( N - 1 ) ) ) -> ( ( P ++ <" ( P ` 0 ) "> ) ` i ) = ( P ` i ) ) |
| 47 | elfzom1p1elfzo | |- ( ( N e. NN /\ i e. ( 0 ..^ ( N - 1 ) ) ) -> ( i + 1 ) e. ( 0 ..^ N ) ) |
|
| 48 | 47 | adantlr | |- ( ( ( N e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) ) /\ i e. ( 0 ..^ ( N - 1 ) ) ) -> ( i + 1 ) e. ( 0 ..^ N ) ) |
| 49 | 40 | ad2antll | |- ( ( N e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) ) -> ( 0 ..^ ( # ` P ) ) = ( 0 ..^ N ) ) |
| 50 | 49 | adantr | |- ( ( ( N e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) ) /\ i e. ( 0 ..^ ( N - 1 ) ) ) -> ( 0 ..^ ( # ` P ) ) = ( 0 ..^ N ) ) |
| 51 | 48 50 | eleqtrrd | |- ( ( ( N e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) ) /\ i e. ( 0 ..^ ( N - 1 ) ) ) -> ( i + 1 ) e. ( 0 ..^ ( # ` P ) ) ) |
| 52 | ccatval1 | |- ( ( P e. Word ( Vtx ` G ) /\ <" ( P ` 0 ) "> e. Word ( Vtx ` G ) /\ ( i + 1 ) e. ( 0 ..^ ( # ` P ) ) ) -> ( ( P ++ <" ( P ` 0 ) "> ) ` ( i + 1 ) ) = ( P ` ( i + 1 ) ) ) |
|
| 53 | 11 12 51 52 | syl3anc | |- ( ( ( N e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) ) /\ i e. ( 0 ..^ ( N - 1 ) ) ) -> ( ( P ++ <" ( P ` 0 ) "> ) ` ( i + 1 ) ) = ( P ` ( i + 1 ) ) ) |
| 54 | 46 53 | preq12d | |- ( ( ( N e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) ) /\ i e. ( 0 ..^ ( N - 1 ) ) ) -> { ( ( P ++ <" ( P ` 0 ) "> ) ` i ) , ( ( P ++ <" ( P ` 0 ) "> ) ` ( i + 1 ) ) } = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) |
| 55 | 54 | eleq1d | |- ( ( ( N e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) ) /\ i e. ( 0 ..^ ( N - 1 ) ) ) -> ( { ( ( P ++ <" ( P ` 0 ) "> ) ` i ) , ( ( P ++ <" ( P ` 0 ) "> ) ` ( i + 1 ) ) } e. ( Edg ` G ) <-> { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) |
| 56 | 55 | ralbidva | |- ( ( N e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) ) -> ( A. i e. ( 0 ..^ ( N - 1 ) ) { ( ( P ++ <" ( P ` 0 ) "> ) ` i ) , ( ( P ++ <" ( P ` 0 ) "> ) ` ( i + 1 ) ) } e. ( Edg ` G ) <-> A. i e. ( 0 ..^ ( N - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) |
| 57 | 56 | biimprcd | |- ( A. i e. ( 0 ..^ ( N - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) -> ( ( N e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) ) -> A. i e. ( 0 ..^ ( N - 1 ) ) { ( ( P ++ <" ( P ` 0 ) "> ) ` i ) , ( ( P ++ <" ( P ` 0 ) "> ) ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) |
| 58 | 57 | adantr | |- ( ( A. i e. ( 0 ..^ ( N - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` P ) , ( P ` 0 ) } e. ( Edg ` G ) ) -> ( ( N e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) ) -> A. i e. ( 0 ..^ ( N - 1 ) ) { ( ( P ++ <" ( P ` 0 ) "> ) ` i ) , ( ( P ++ <" ( P ` 0 ) "> ) ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) |
| 59 | 58 | expdcom | |- ( N e. NN -> ( ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) -> ( ( A. i e. ( 0 ..^ ( N - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` P ) , ( P ` 0 ) } e. ( Edg ` G ) ) -> A. i e. ( 0 ..^ ( N - 1 ) ) { ( ( P ++ <" ( P ` 0 ) "> ) ` i ) , ( ( P ++ <" ( P ` 0 ) "> ) ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) ) |
| 60 | 59 | 3imp | |- ( ( N e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) /\ ( A. i e. ( 0 ..^ ( N - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` P ) , ( P ` 0 ) } e. ( Edg ` G ) ) ) -> A. i e. ( 0 ..^ ( N - 1 ) ) { ( ( P ++ <" ( P ` 0 ) "> ) ` i ) , ( ( P ++ <" ( P ` 0 ) "> ) ` ( i + 1 ) ) } e. ( Edg ` G ) ) |
| 61 | fzo0end | |- ( N e. NN -> ( N - 1 ) e. ( 0 ..^ N ) ) |
|
| 62 | 40 | eleq2d | |- ( ( # ` P ) = N -> ( ( N - 1 ) e. ( 0 ..^ ( # ` P ) ) <-> ( N - 1 ) e. ( 0 ..^ N ) ) ) |
| 63 | 62 | adantl | |- ( ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) -> ( ( N - 1 ) e. ( 0 ..^ ( # ` P ) ) <-> ( N - 1 ) e. ( 0 ..^ N ) ) ) |
| 64 | 61 63 | syl5ibrcom | |- ( N e. NN -> ( ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) -> ( N - 1 ) e. ( 0 ..^ ( # ` P ) ) ) ) |
| 65 | 64 | imp | |- ( ( N e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) ) -> ( N - 1 ) e. ( 0 ..^ ( # ` P ) ) ) |
| 66 | ccatval1 | |- ( ( P e. Word ( Vtx ` G ) /\ <" ( P ` 0 ) "> e. Word ( Vtx ` G ) /\ ( N - 1 ) e. ( 0 ..^ ( # ` P ) ) ) -> ( ( P ++ <" ( P ` 0 ) "> ) ` ( N - 1 ) ) = ( P ` ( N - 1 ) ) ) |
|
| 67 | 5 7 65 66 | syl3anc | |- ( ( N e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) ) -> ( ( P ++ <" ( P ` 0 ) "> ) ` ( N - 1 ) ) = ( P ` ( N - 1 ) ) ) |
| 68 | lsw | |- ( P e. Word ( Vtx ` G ) -> ( lastS ` P ) = ( P ` ( ( # ` P ) - 1 ) ) ) |
|
| 69 | 68 | adantr | |- ( ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) -> ( lastS ` P ) = ( P ` ( ( # ` P ) - 1 ) ) ) |
| 70 | fvoveq1 | |- ( ( # ` P ) = N -> ( P ` ( ( # ` P ) - 1 ) ) = ( P ` ( N - 1 ) ) ) |
|
| 71 | 70 | adantl | |- ( ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) -> ( P ` ( ( # ` P ) - 1 ) ) = ( P ` ( N - 1 ) ) ) |
| 72 | 69 71 | eqtr2d | |- ( ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) -> ( P ` ( N - 1 ) ) = ( lastS ` P ) ) |
| 73 | 72 | adantl | |- ( ( N e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) ) -> ( P ` ( N - 1 ) ) = ( lastS ` P ) ) |
| 74 | 67 73 | eqtr2d | |- ( ( N e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) ) -> ( lastS ` P ) = ( ( P ++ <" ( P ` 0 ) "> ) ` ( N - 1 ) ) ) |
| 75 | nncn | |- ( N e. NN -> N e. CC ) |
|
| 76 | 1cnd | |- ( N e. NN -> 1 e. CC ) |
|
| 77 | 75 76 | npcand | |- ( N e. NN -> ( ( N - 1 ) + 1 ) = N ) |
| 78 | 77 | fveq2d | |- ( N e. NN -> ( ( P ++ <" ( P ` 0 ) "> ) ` ( ( N - 1 ) + 1 ) ) = ( ( P ++ <" ( P ` 0 ) "> ) ` N ) ) |
| 79 | 78 | adantr | |- ( ( N e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) ) -> ( ( P ++ <" ( P ` 0 ) "> ) ` ( ( N - 1 ) + 1 ) ) = ( ( P ++ <" ( P ` 0 ) "> ) ` N ) ) |
| 80 | fveq2 | |- ( ( # ` P ) = N -> ( ( P ++ <" ( P ` 0 ) "> ) ` ( # ` P ) ) = ( ( P ++ <" ( P ` 0 ) "> ) ` N ) ) |
|
| 81 | 80 | ad2antll | |- ( ( N e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) ) -> ( ( P ++ <" ( P ` 0 ) "> ) ` ( # ` P ) ) = ( ( P ++ <" ( P ` 0 ) "> ) ` N ) ) |
| 82 | ccatws1ls | |- ( ( P e. Word ( Vtx ` G ) /\ ( P ` 0 ) e. ( Vtx ` G ) ) -> ( ( P ++ <" ( P ` 0 ) "> ) ` ( # ` P ) ) = ( P ` 0 ) ) |
|
| 83 | 5 6 82 | syl2anc | |- ( ( N e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) ) -> ( ( P ++ <" ( P ` 0 ) "> ) ` ( # ` P ) ) = ( P ` 0 ) ) |
| 84 | 79 81 83 | 3eqtr2rd | |- ( ( N e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) ) -> ( P ` 0 ) = ( ( P ++ <" ( P ` 0 ) "> ) ` ( ( N - 1 ) + 1 ) ) ) |
| 85 | 74 84 | preq12d | |- ( ( N e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) ) -> { ( lastS ` P ) , ( P ` 0 ) } = { ( ( P ++ <" ( P ` 0 ) "> ) ` ( N - 1 ) ) , ( ( P ++ <" ( P ` 0 ) "> ) ` ( ( N - 1 ) + 1 ) ) } ) |
| 86 | 85 | eleq1d | |- ( ( N e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) ) -> ( { ( lastS ` P ) , ( P ` 0 ) } e. ( Edg ` G ) <-> { ( ( P ++ <" ( P ` 0 ) "> ) ` ( N - 1 ) ) , ( ( P ++ <" ( P ` 0 ) "> ) ` ( ( N - 1 ) + 1 ) ) } e. ( Edg ` G ) ) ) |
| 87 | 86 | biimpcd | |- ( { ( lastS ` P ) , ( P ` 0 ) } e. ( Edg ` G ) -> ( ( N e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) ) -> { ( ( P ++ <" ( P ` 0 ) "> ) ` ( N - 1 ) ) , ( ( P ++ <" ( P ` 0 ) "> ) ` ( ( N - 1 ) + 1 ) ) } e. ( Edg ` G ) ) ) |
| 88 | 87 | adantl | |- ( ( A. i e. ( 0 ..^ ( N - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` P ) , ( P ` 0 ) } e. ( Edg ` G ) ) -> ( ( N e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) ) -> { ( ( P ++ <" ( P ` 0 ) "> ) ` ( N - 1 ) ) , ( ( P ++ <" ( P ` 0 ) "> ) ` ( ( N - 1 ) + 1 ) ) } e. ( Edg ` G ) ) ) |
| 89 | 88 | expdcom | |- ( N e. NN -> ( ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) -> ( ( A. i e. ( 0 ..^ ( N - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` P ) , ( P ` 0 ) } e. ( Edg ` G ) ) -> { ( ( P ++ <" ( P ` 0 ) "> ) ` ( N - 1 ) ) , ( ( P ++ <" ( P ` 0 ) "> ) ` ( ( N - 1 ) + 1 ) ) } e. ( Edg ` G ) ) ) ) |
| 90 | 89 | 3imp | |- ( ( N e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) /\ ( A. i e. ( 0 ..^ ( N - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` P ) , ( P ` 0 ) } e. ( Edg ` G ) ) ) -> { ( ( P ++ <" ( P ` 0 ) "> ) ` ( N - 1 ) ) , ( ( P ++ <" ( P ` 0 ) "> ) ` ( ( N - 1 ) + 1 ) ) } e. ( Edg ` G ) ) |
| 91 | ovex | |- ( N - 1 ) e. _V |
|
| 92 | fveq2 | |- ( i = ( N - 1 ) -> ( ( P ++ <" ( P ` 0 ) "> ) ` i ) = ( ( P ++ <" ( P ` 0 ) "> ) ` ( N - 1 ) ) ) |
|
| 93 | fvoveq1 | |- ( i = ( N - 1 ) -> ( ( P ++ <" ( P ` 0 ) "> ) ` ( i + 1 ) ) = ( ( P ++ <" ( P ` 0 ) "> ) ` ( ( N - 1 ) + 1 ) ) ) |
|
| 94 | 92 93 | preq12d | |- ( i = ( N - 1 ) -> { ( ( P ++ <" ( P ` 0 ) "> ) ` i ) , ( ( P ++ <" ( P ` 0 ) "> ) ` ( i + 1 ) ) } = { ( ( P ++ <" ( P ` 0 ) "> ) ` ( N - 1 ) ) , ( ( P ++ <" ( P ` 0 ) "> ) ` ( ( N - 1 ) + 1 ) ) } ) |
| 95 | 94 | eleq1d | |- ( i = ( N - 1 ) -> ( { ( ( P ++ <" ( P ` 0 ) "> ) ` i ) , ( ( P ++ <" ( P ` 0 ) "> ) ` ( i + 1 ) ) } e. ( Edg ` G ) <-> { ( ( P ++ <" ( P ` 0 ) "> ) ` ( N - 1 ) ) , ( ( P ++ <" ( P ` 0 ) "> ) ` ( ( N - 1 ) + 1 ) ) } e. ( Edg ` G ) ) ) |
| 96 | 91 95 | ralsn | |- ( A. i e. { ( N - 1 ) } { ( ( P ++ <" ( P ` 0 ) "> ) ` i ) , ( ( P ++ <" ( P ` 0 ) "> ) ` ( i + 1 ) ) } e. ( Edg ` G ) <-> { ( ( P ++ <" ( P ` 0 ) "> ) ` ( N - 1 ) ) , ( ( P ++ <" ( P ` 0 ) "> ) ` ( ( N - 1 ) + 1 ) ) } e. ( Edg ` G ) ) |
| 97 | 90 96 | sylibr | |- ( ( N e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) /\ ( A. i e. ( 0 ..^ ( N - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` P ) , ( P ` 0 ) } e. ( Edg ` G ) ) ) -> A. i e. { ( N - 1 ) } { ( ( P ++ <" ( P ` 0 ) "> ) ` i ) , ( ( P ++ <" ( P ` 0 ) "> ) ` ( i + 1 ) ) } e. ( Edg ` G ) ) |
| 98 | 75 76 76 | addsubd | |- ( N e. NN -> ( ( N + 1 ) - 1 ) = ( ( N - 1 ) + 1 ) ) |
| 99 | 98 | oveq2d | |- ( N e. NN -> ( 0 ..^ ( ( N + 1 ) - 1 ) ) = ( 0 ..^ ( ( N - 1 ) + 1 ) ) ) |
| 100 | nnm1nn0 | |- ( N e. NN -> ( N - 1 ) e. NN0 ) |
|
| 101 | elnn0uz | |- ( ( N - 1 ) e. NN0 <-> ( N - 1 ) e. ( ZZ>= ` 0 ) ) |
|
| 102 | 100 101 | sylib | |- ( N e. NN -> ( N - 1 ) e. ( ZZ>= ` 0 ) ) |
| 103 | fzosplitsn | |- ( ( N - 1 ) e. ( ZZ>= ` 0 ) -> ( 0 ..^ ( ( N - 1 ) + 1 ) ) = ( ( 0 ..^ ( N - 1 ) ) u. { ( N - 1 ) } ) ) |
|
| 104 | 102 103 | syl | |- ( N e. NN -> ( 0 ..^ ( ( N - 1 ) + 1 ) ) = ( ( 0 ..^ ( N - 1 ) ) u. { ( N - 1 ) } ) ) |
| 105 | 99 104 | eqtrd | |- ( N e. NN -> ( 0 ..^ ( ( N + 1 ) - 1 ) ) = ( ( 0 ..^ ( N - 1 ) ) u. { ( N - 1 ) } ) ) |
| 106 | 105 | raleqdv | |- ( N e. NN -> ( A. i e. ( 0 ..^ ( ( N + 1 ) - 1 ) ) { ( ( P ++ <" ( P ` 0 ) "> ) ` i ) , ( ( P ++ <" ( P ` 0 ) "> ) ` ( i + 1 ) ) } e. ( Edg ` G ) <-> A. i e. ( ( 0 ..^ ( N - 1 ) ) u. { ( N - 1 ) } ) { ( ( P ++ <" ( P ` 0 ) "> ) ` i ) , ( ( P ++ <" ( P ` 0 ) "> ) ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) |
| 107 | ralunb | |- ( A. i e. ( ( 0 ..^ ( N - 1 ) ) u. { ( N - 1 ) } ) { ( ( P ++ <" ( P ` 0 ) "> ) ` i ) , ( ( P ++ <" ( P ` 0 ) "> ) ` ( i + 1 ) ) } e. ( Edg ` G ) <-> ( A. i e. ( 0 ..^ ( N - 1 ) ) { ( ( P ++ <" ( P ` 0 ) "> ) ` i ) , ( ( P ++ <" ( P ` 0 ) "> ) ` ( i + 1 ) ) } e. ( Edg ` G ) /\ A. i e. { ( N - 1 ) } { ( ( P ++ <" ( P ` 0 ) "> ) ` i ) , ( ( P ++ <" ( P ` 0 ) "> ) ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) |
|
| 108 | 106 107 | bitrdi | |- ( N e. NN -> ( A. i e. ( 0 ..^ ( ( N + 1 ) - 1 ) ) { ( ( P ++ <" ( P ` 0 ) "> ) ` i ) , ( ( P ++ <" ( P ` 0 ) "> ) ` ( i + 1 ) ) } e. ( Edg ` G ) <-> ( A. i e. ( 0 ..^ ( N - 1 ) ) { ( ( P ++ <" ( P ` 0 ) "> ) ` i ) , ( ( P ++ <" ( P ` 0 ) "> ) ` ( i + 1 ) ) } e. ( Edg ` G ) /\ A. i e. { ( N - 1 ) } { ( ( P ++ <" ( P ` 0 ) "> ) ` i ) , ( ( P ++ <" ( P ` 0 ) "> ) ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) ) |
| 109 | 108 | 3ad2ant1 | |- ( ( N e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) /\ ( A. i e. ( 0 ..^ ( N - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` P ) , ( P ` 0 ) } e. ( Edg ` G ) ) ) -> ( A. i e. ( 0 ..^ ( ( N + 1 ) - 1 ) ) { ( ( P ++ <" ( P ` 0 ) "> ) ` i ) , ( ( P ++ <" ( P ` 0 ) "> ) ` ( i + 1 ) ) } e. ( Edg ` G ) <-> ( A. i e. ( 0 ..^ ( N - 1 ) ) { ( ( P ++ <" ( P ` 0 ) "> ) ` i ) , ( ( P ++ <" ( P ` 0 ) "> ) ` ( i + 1 ) ) } e. ( Edg ` G ) /\ A. i e. { ( N - 1 ) } { ( ( P ++ <" ( P ` 0 ) "> ) ` i ) , ( ( P ++ <" ( P ` 0 ) "> ) ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) ) |
| 110 | 60 97 109 | mpbir2and | |- ( ( N e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) /\ ( A. i e. ( 0 ..^ ( N - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` P ) , ( P ` 0 ) } e. ( Edg ` G ) ) ) -> A. i e. ( 0 ..^ ( ( N + 1 ) - 1 ) ) { ( ( P ++ <" ( P ` 0 ) "> ) ` i ) , ( ( P ++ <" ( P ` 0 ) "> ) ` ( i + 1 ) ) } e. ( Edg ` G ) ) |
| 111 | ccatlen | |- ( ( P e. Word ( Vtx ` G ) /\ <" ( P ` 0 ) "> e. Word ( Vtx ` G ) ) -> ( # ` ( P ++ <" ( P ` 0 ) "> ) ) = ( ( # ` P ) + ( # ` <" ( P ` 0 ) "> ) ) ) |
|
| 112 | 5 7 111 | syl2anc | |- ( ( N e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) ) -> ( # ` ( P ++ <" ( P ` 0 ) "> ) ) = ( ( # ` P ) + ( # ` <" ( P ` 0 ) "> ) ) ) |
| 113 | id | |- ( ( # ` P ) = N -> ( # ` P ) = N ) |
|
| 114 | s1len | |- ( # ` <" ( P ` 0 ) "> ) = 1 |
|
| 115 | 114 | a1i | |- ( ( # ` P ) = N -> ( # ` <" ( P ` 0 ) "> ) = 1 ) |
| 116 | 113 115 | oveq12d | |- ( ( # ` P ) = N -> ( ( # ` P ) + ( # ` <" ( P ` 0 ) "> ) ) = ( N + 1 ) ) |
| 117 | 116 | ad2antll | |- ( ( N e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) ) -> ( ( # ` P ) + ( # ` <" ( P ` 0 ) "> ) ) = ( N + 1 ) ) |
| 118 | 112 117 | eqtrd | |- ( ( N e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) ) -> ( # ` ( P ++ <" ( P ` 0 ) "> ) ) = ( N + 1 ) ) |
| 119 | 118 | 3adant3 | |- ( ( N e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) /\ ( A. i e. ( 0 ..^ ( N - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` P ) , ( P ` 0 ) } e. ( Edg ` G ) ) ) -> ( # ` ( P ++ <" ( P ` 0 ) "> ) ) = ( N + 1 ) ) |
| 120 | 119 | oveq1d | |- ( ( N e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) /\ ( A. i e. ( 0 ..^ ( N - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` P ) , ( P ` 0 ) } e. ( Edg ` G ) ) ) -> ( ( # ` ( P ++ <" ( P ` 0 ) "> ) ) - 1 ) = ( ( N + 1 ) - 1 ) ) |
| 121 | 120 | oveq2d | |- ( ( N e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) /\ ( A. i e. ( 0 ..^ ( N - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` P ) , ( P ` 0 ) } e. ( Edg ` G ) ) ) -> ( 0 ..^ ( ( # ` ( P ++ <" ( P ` 0 ) "> ) ) - 1 ) ) = ( 0 ..^ ( ( N + 1 ) - 1 ) ) ) |
| 122 | 121 | raleqdv | |- ( ( N e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) /\ ( A. i e. ( 0 ..^ ( N - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` P ) , ( P ` 0 ) } e. ( Edg ` G ) ) ) -> ( A. i e. ( 0 ..^ ( ( # ` ( P ++ <" ( P ` 0 ) "> ) ) - 1 ) ) { ( ( P ++ <" ( P ` 0 ) "> ) ` i ) , ( ( P ++ <" ( P ` 0 ) "> ) ` ( i + 1 ) ) } e. ( Edg ` G ) <-> A. i e. ( 0 ..^ ( ( N + 1 ) - 1 ) ) { ( ( P ++ <" ( P ` 0 ) "> ) ` i ) , ( ( P ++ <" ( P ` 0 ) "> ) ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) |
| 123 | 110 122 | mpbird | |- ( ( N e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) /\ ( A. i e. ( 0 ..^ ( N - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` P ) , ( P ` 0 ) } e. ( Edg ` G ) ) ) -> A. i e. ( 0 ..^ ( ( # ` ( P ++ <" ( P ` 0 ) "> ) ) - 1 ) ) { ( ( P ++ <" ( P ` 0 ) "> ) ` i ) , ( ( P ++ <" ( P ` 0 ) "> ) ` ( i + 1 ) ) } e. ( Edg ` G ) ) |
| 124 | 4 10 123 | 3jca | |- ( ( N e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) /\ ( A. i e. ( 0 ..^ ( N - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` P ) , ( P ` 0 ) } e. ( Edg ` G ) ) ) -> ( ( P ++ <" ( P ` 0 ) "> ) =/= (/) /\ ( P ++ <" ( P ` 0 ) "> ) e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` ( P ++ <" ( P ` 0 ) "> ) ) - 1 ) ) { ( ( P ++ <" ( P ` 0 ) "> ) ` i ) , ( ( P ++ <" ( P ` 0 ) "> ) ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) |
| 125 | nnnn0 | |- ( N e. NN -> N e. NN0 ) |
|
| 126 | iswwlksn | |- ( N e. NN0 -> ( ( P ++ <" ( P ` 0 ) "> ) e. ( N WWalksN G ) <-> ( ( P ++ <" ( P ` 0 ) "> ) e. ( WWalks ` G ) /\ ( # ` ( P ++ <" ( P ` 0 ) "> ) ) = ( N + 1 ) ) ) ) |
|
| 127 | 125 126 | syl | |- ( N e. NN -> ( ( P ++ <" ( P ` 0 ) "> ) e. ( N WWalksN G ) <-> ( ( P ++ <" ( P ` 0 ) "> ) e. ( WWalks ` G ) /\ ( # ` ( P ++ <" ( P ` 0 ) "> ) ) = ( N + 1 ) ) ) ) |
| 128 | eqid | |- ( Vtx ` G ) = ( Vtx ` G ) |
|
| 129 | eqid | |- ( Edg ` G ) = ( Edg ` G ) |
|
| 130 | 128 129 | iswwlks | |- ( ( P ++ <" ( P ` 0 ) "> ) e. ( WWalks ` G ) <-> ( ( P ++ <" ( P ` 0 ) "> ) =/= (/) /\ ( P ++ <" ( P ` 0 ) "> ) e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` ( P ++ <" ( P ` 0 ) "> ) ) - 1 ) ) { ( ( P ++ <" ( P ` 0 ) "> ) ` i ) , ( ( P ++ <" ( P ` 0 ) "> ) ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) |
| 131 | 130 | anbi1i | |- ( ( ( P ++ <" ( P ` 0 ) "> ) e. ( WWalks ` G ) /\ ( # ` ( P ++ <" ( P ` 0 ) "> ) ) = ( N + 1 ) ) <-> ( ( ( P ++ <" ( P ` 0 ) "> ) =/= (/) /\ ( P ++ <" ( P ` 0 ) "> ) e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` ( P ++ <" ( P ` 0 ) "> ) ) - 1 ) ) { ( ( P ++ <" ( P ` 0 ) "> ) ` i ) , ( ( P ++ <" ( P ` 0 ) "> ) ` ( i + 1 ) ) } e. ( Edg ` G ) ) /\ ( # ` ( P ++ <" ( P ` 0 ) "> ) ) = ( N + 1 ) ) ) |
| 132 | 127 131 | bitrdi | |- ( N e. NN -> ( ( P ++ <" ( P ` 0 ) "> ) e. ( N WWalksN G ) <-> ( ( ( P ++ <" ( P ` 0 ) "> ) =/= (/) /\ ( P ++ <" ( P ` 0 ) "> ) e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` ( P ++ <" ( P ` 0 ) "> ) ) - 1 ) ) { ( ( P ++ <" ( P ` 0 ) "> ) ` i ) , ( ( P ++ <" ( P ` 0 ) "> ) ` ( i + 1 ) ) } e. ( Edg ` G ) ) /\ ( # ` ( P ++ <" ( P ` 0 ) "> ) ) = ( N + 1 ) ) ) ) |
| 133 | 132 | 3ad2ant1 | |- ( ( N e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) /\ ( A. i e. ( 0 ..^ ( N - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` P ) , ( P ` 0 ) } e. ( Edg ` G ) ) ) -> ( ( P ++ <" ( P ` 0 ) "> ) e. ( N WWalksN G ) <-> ( ( ( P ++ <" ( P ` 0 ) "> ) =/= (/) /\ ( P ++ <" ( P ` 0 ) "> ) e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` ( P ++ <" ( P ` 0 ) "> ) ) - 1 ) ) { ( ( P ++ <" ( P ` 0 ) "> ) ` i ) , ( ( P ++ <" ( P ` 0 ) "> ) ` ( i + 1 ) ) } e. ( Edg ` G ) ) /\ ( # ` ( P ++ <" ( P ` 0 ) "> ) ) = ( N + 1 ) ) ) ) |
| 134 | 124 119 133 | mpbir2and | |- ( ( N e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) /\ ( A. i e. ( 0 ..^ ( N - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` P ) , ( P ` 0 ) } e. ( Edg ` G ) ) ) -> ( P ++ <" ( P ` 0 ) "> ) e. ( N WWalksN G ) ) |
| 135 | lswccats1 | |- ( ( P e. Word ( Vtx ` G ) /\ ( P ` 0 ) e. ( Vtx ` G ) ) -> ( lastS ` ( P ++ <" ( P ` 0 ) "> ) ) = ( P ` 0 ) ) |
|
| 136 | 5 6 135 | syl2anc | |- ( ( N e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) ) -> ( lastS ` ( P ++ <" ( P ` 0 ) "> ) ) = ( P ` 0 ) ) |
| 137 | lbfzo0 | |- ( 0 e. ( 0 ..^ N ) <-> N e. NN ) |
|
| 138 | 137 | biimpri | |- ( N e. NN -> 0 e. ( 0 ..^ N ) ) |
| 139 | 40 | eleq2d | |- ( ( # ` P ) = N -> ( 0 e. ( 0 ..^ ( # ` P ) ) <-> 0 e. ( 0 ..^ N ) ) ) |
| 140 | 139 | adantl | |- ( ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) -> ( 0 e. ( 0 ..^ ( # ` P ) ) <-> 0 e. ( 0 ..^ N ) ) ) |
| 141 | 138 140 | syl5ibrcom | |- ( N e. NN -> ( ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) -> 0 e. ( 0 ..^ ( # ` P ) ) ) ) |
| 142 | 141 | imp | |- ( ( N e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) ) -> 0 e. ( 0 ..^ ( # ` P ) ) ) |
| 143 | ccatval1 | |- ( ( P e. Word ( Vtx ` G ) /\ <" ( P ` 0 ) "> e. Word ( Vtx ` G ) /\ 0 e. ( 0 ..^ ( # ` P ) ) ) -> ( ( P ++ <" ( P ` 0 ) "> ) ` 0 ) = ( P ` 0 ) ) |
|
| 144 | 5 7 142 143 | syl3anc | |- ( ( N e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) ) -> ( ( P ++ <" ( P ` 0 ) "> ) ` 0 ) = ( P ` 0 ) ) |
| 145 | 136 144 | eqtr4d | |- ( ( N e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) ) -> ( lastS ` ( P ++ <" ( P ` 0 ) "> ) ) = ( ( P ++ <" ( P ` 0 ) "> ) ` 0 ) ) |
| 146 | 145 | 3adant3 | |- ( ( N e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) /\ ( A. i e. ( 0 ..^ ( N - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` P ) , ( P ` 0 ) } e. ( Edg ` G ) ) ) -> ( lastS ` ( P ++ <" ( P ` 0 ) "> ) ) = ( ( P ++ <" ( P ` 0 ) "> ) ` 0 ) ) |
| 147 | fveq2 | |- ( w = ( P ++ <" ( P ` 0 ) "> ) -> ( lastS ` w ) = ( lastS ` ( P ++ <" ( P ` 0 ) "> ) ) ) |
|
| 148 | fveq1 | |- ( w = ( P ++ <" ( P ` 0 ) "> ) -> ( w ` 0 ) = ( ( P ++ <" ( P ` 0 ) "> ) ` 0 ) ) |
|
| 149 | 147 148 | eqeq12d | |- ( w = ( P ++ <" ( P ` 0 ) "> ) -> ( ( lastS ` w ) = ( w ` 0 ) <-> ( lastS ` ( P ++ <" ( P ` 0 ) "> ) ) = ( ( P ++ <" ( P ` 0 ) "> ) ` 0 ) ) ) |
| 150 | 149 1 | elrab2 | |- ( ( P ++ <" ( P ` 0 ) "> ) e. D <-> ( ( P ++ <" ( P ` 0 ) "> ) e. ( N WWalksN G ) /\ ( lastS ` ( P ++ <" ( P ` 0 ) "> ) ) = ( ( P ++ <" ( P ` 0 ) "> ) ` 0 ) ) ) |
| 151 | 134 146 150 | sylanbrc | |- ( ( N e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) /\ ( A. i e. ( 0 ..^ ( N - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` P ) , ( P ` 0 ) } e. ( Edg ` G ) ) ) -> ( P ++ <" ( P ` 0 ) "> ) e. D ) |