This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The first symbol of a nonempty word is an element of the alphabet for the word. (Contributed by AV, 29-Sep-2018) (Proof shortened by AV, 14-Oct-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fstwrdne0 | |- ( ( N e. NN /\ ( W e. Word V /\ ( # ` W ) = N ) ) -> ( W ` 0 ) e. V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simprl | |- ( ( N e. NN /\ ( W e. Word V /\ ( # ` W ) = N ) ) -> W e. Word V ) |
|
| 2 | nnge1 | |- ( N e. NN -> 1 <_ N ) |
|
| 3 | 2 | adantr | |- ( ( N e. NN /\ ( W e. Word V /\ ( # ` W ) = N ) ) -> 1 <_ N ) |
| 4 | breq2 | |- ( ( # ` W ) = N -> ( 1 <_ ( # ` W ) <-> 1 <_ N ) ) |
|
| 5 | 4 | ad2antll | |- ( ( N e. NN /\ ( W e. Word V /\ ( # ` W ) = N ) ) -> ( 1 <_ ( # ` W ) <-> 1 <_ N ) ) |
| 6 | 3 5 | mpbird | |- ( ( N e. NN /\ ( W e. Word V /\ ( # ` W ) = N ) ) -> 1 <_ ( # ` W ) ) |
| 7 | wrdsymb1 | |- ( ( W e. Word V /\ 1 <_ ( # ` W ) ) -> ( W ` 0 ) e. V ) |
|
| 8 | 1 6 7 | syl2anc | |- ( ( N e. NN /\ ( W e. Word V /\ ( # ` W ) = N ) ) -> ( W ` 0 ) e. V ) |