This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A word over the set of vertices representing a walk (in an undirected graph). (Contributed by Alexander van der Vekens, 15-Jul-2018) (Revised by AV, 8-Apr-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | wwlks.v | |- V = ( Vtx ` G ) |
|
| wwlks.e | |- E = ( Edg ` G ) |
||
| Assertion | iswwlks | |- ( W e. ( WWalks ` G ) <-> ( W =/= (/) /\ W e. Word V /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wwlks.v | |- V = ( Vtx ` G ) |
|
| 2 | wwlks.e | |- E = ( Edg ` G ) |
|
| 3 | neeq1 | |- ( w = W -> ( w =/= (/) <-> W =/= (/) ) ) |
|
| 4 | fveq2 | |- ( w = W -> ( # ` w ) = ( # ` W ) ) |
|
| 5 | 4 | oveq1d | |- ( w = W -> ( ( # ` w ) - 1 ) = ( ( # ` W ) - 1 ) ) |
| 6 | 5 | oveq2d | |- ( w = W -> ( 0 ..^ ( ( # ` w ) - 1 ) ) = ( 0 ..^ ( ( # ` W ) - 1 ) ) ) |
| 7 | fveq1 | |- ( w = W -> ( w ` i ) = ( W ` i ) ) |
|
| 8 | fveq1 | |- ( w = W -> ( w ` ( i + 1 ) ) = ( W ` ( i + 1 ) ) ) |
|
| 9 | 7 8 | preq12d | |- ( w = W -> { ( w ` i ) , ( w ` ( i + 1 ) ) } = { ( W ` i ) , ( W ` ( i + 1 ) ) } ) |
| 10 | 9 | eleq1d | |- ( w = W -> ( { ( w ` i ) , ( w ` ( i + 1 ) ) } e. E <-> { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E ) ) |
| 11 | 6 10 | raleqbidv | |- ( w = W -> ( A. i e. ( 0 ..^ ( ( # ` w ) - 1 ) ) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. E <-> A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E ) ) |
| 12 | 3 11 | anbi12d | |- ( w = W -> ( ( w =/= (/) /\ A. i e. ( 0 ..^ ( ( # ` w ) - 1 ) ) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. E ) <-> ( W =/= (/) /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E ) ) ) |
| 13 | 12 | elrab | |- ( W e. { w e. Word V | ( w =/= (/) /\ A. i e. ( 0 ..^ ( ( # ` w ) - 1 ) ) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. E ) } <-> ( W e. Word V /\ ( W =/= (/) /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E ) ) ) |
| 14 | 1 2 | wwlks | |- ( WWalks ` G ) = { w e. Word V | ( w =/= (/) /\ A. i e. ( 0 ..^ ( ( # ` w ) - 1 ) ) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. E ) } |
| 15 | 14 | eleq2i | |- ( W e. ( WWalks ` G ) <-> W e. { w e. Word V | ( w =/= (/) /\ A. i e. ( 0 ..^ ( ( # ` w ) - 1 ) ) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. E ) } ) |
| 16 | 3anan12 | |- ( ( W =/= (/) /\ W e. Word V /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E ) <-> ( W e. Word V /\ ( W =/= (/) /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E ) ) ) |
|
| 17 | 13 15 16 | 3bitr4i | |- ( W e. ( WWalks ` G ) <-> ( W =/= (/) /\ W e. Word V /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E ) ) |