This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure for the von Mangoldt function. (Contributed by Mario Carneiro, 7-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | vmacl | |- ( A e. NN -> ( Lam ` A ) e. RR ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 | |- ( ( Lam ` A ) = 0 -> ( ( Lam ` A ) e. RR <-> 0 e. RR ) ) |
|
| 2 | isppw2 | |- ( A e. NN -> ( ( Lam ` A ) =/= 0 <-> E. p e. Prime E. k e. NN A = ( p ^ k ) ) ) |
|
| 3 | vmappw | |- ( ( p e. Prime /\ k e. NN ) -> ( Lam ` ( p ^ k ) ) = ( log ` p ) ) |
|
| 4 | prmnn | |- ( p e. Prime -> p e. NN ) |
|
| 5 | 4 | nnrpd | |- ( p e. Prime -> p e. RR+ ) |
| 6 | 5 | relogcld | |- ( p e. Prime -> ( log ` p ) e. RR ) |
| 7 | 6 | adantr | |- ( ( p e. Prime /\ k e. NN ) -> ( log ` p ) e. RR ) |
| 8 | 3 7 | eqeltrd | |- ( ( p e. Prime /\ k e. NN ) -> ( Lam ` ( p ^ k ) ) e. RR ) |
| 9 | fveq2 | |- ( A = ( p ^ k ) -> ( Lam ` A ) = ( Lam ` ( p ^ k ) ) ) |
|
| 10 | 9 | eleq1d | |- ( A = ( p ^ k ) -> ( ( Lam ` A ) e. RR <-> ( Lam ` ( p ^ k ) ) e. RR ) ) |
| 11 | 8 10 | syl5ibrcom | |- ( ( p e. Prime /\ k e. NN ) -> ( A = ( p ^ k ) -> ( Lam ` A ) e. RR ) ) |
| 12 | 11 | rexlimivv | |- ( E. p e. Prime E. k e. NN A = ( p ^ k ) -> ( Lam ` A ) e. RR ) |
| 13 | 2 12 | biimtrdi | |- ( A e. NN -> ( ( Lam ` A ) =/= 0 -> ( Lam ` A ) e. RR ) ) |
| 14 | 13 | imp | |- ( ( A e. NN /\ ( Lam ` A ) =/= 0 ) -> ( Lam ` A ) e. RR ) |
| 15 | 0red | |- ( A e. NN -> 0 e. RR ) |
|
| 16 | 1 14 15 | pm2.61ne | |- ( A e. NN -> ( Lam ` A ) e. RR ) |