This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The second Chebyshev function at a successor. (Contributed by Mario Carneiro, 11-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | chpp1 | ⊢ ( 𝐴 ∈ ℕ0 → ( ψ ‘ ( 𝐴 + 1 ) ) = ( ( ψ ‘ 𝐴 ) + ( Λ ‘ ( 𝐴 + 1 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0p1nn | ⊢ ( 𝐴 ∈ ℕ0 → ( 𝐴 + 1 ) ∈ ℕ ) | |
| 2 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 3 | 1 2 | eleqtrdi | ⊢ ( 𝐴 ∈ ℕ0 → ( 𝐴 + 1 ) ∈ ( ℤ≥ ‘ 1 ) ) |
| 4 | elfznn | ⊢ ( 𝑛 ∈ ( 1 ... ( 𝐴 + 1 ) ) → 𝑛 ∈ ℕ ) | |
| 5 | 4 | adantl | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝑛 ∈ ( 1 ... ( 𝐴 + 1 ) ) ) → 𝑛 ∈ ℕ ) |
| 6 | vmacl | ⊢ ( 𝑛 ∈ ℕ → ( Λ ‘ 𝑛 ) ∈ ℝ ) | |
| 7 | 5 6 | syl | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝑛 ∈ ( 1 ... ( 𝐴 + 1 ) ) ) → ( Λ ‘ 𝑛 ) ∈ ℝ ) |
| 8 | 7 | recnd | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝑛 ∈ ( 1 ... ( 𝐴 + 1 ) ) ) → ( Λ ‘ 𝑛 ) ∈ ℂ ) |
| 9 | fveq2 | ⊢ ( 𝑛 = ( 𝐴 + 1 ) → ( Λ ‘ 𝑛 ) = ( Λ ‘ ( 𝐴 + 1 ) ) ) | |
| 10 | 3 8 9 | fsumm1 | ⊢ ( 𝐴 ∈ ℕ0 → Σ 𝑛 ∈ ( 1 ... ( 𝐴 + 1 ) ) ( Λ ‘ 𝑛 ) = ( Σ 𝑛 ∈ ( 1 ... ( ( 𝐴 + 1 ) − 1 ) ) ( Λ ‘ 𝑛 ) + ( Λ ‘ ( 𝐴 + 1 ) ) ) ) |
| 11 | nn0re | ⊢ ( 𝐴 ∈ ℕ0 → 𝐴 ∈ ℝ ) | |
| 12 | peano2re | ⊢ ( 𝐴 ∈ ℝ → ( 𝐴 + 1 ) ∈ ℝ ) | |
| 13 | chpval | ⊢ ( ( 𝐴 + 1 ) ∈ ℝ → ( ψ ‘ ( 𝐴 + 1 ) ) = Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 + 1 ) ) ) ( Λ ‘ 𝑛 ) ) | |
| 14 | 11 12 13 | 3syl | ⊢ ( 𝐴 ∈ ℕ0 → ( ψ ‘ ( 𝐴 + 1 ) ) = Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 + 1 ) ) ) ( Λ ‘ 𝑛 ) ) |
| 15 | nn0z | ⊢ ( 𝐴 ∈ ℕ0 → 𝐴 ∈ ℤ ) | |
| 16 | 15 | peano2zd | ⊢ ( 𝐴 ∈ ℕ0 → ( 𝐴 + 1 ) ∈ ℤ ) |
| 17 | flid | ⊢ ( ( 𝐴 + 1 ) ∈ ℤ → ( ⌊ ‘ ( 𝐴 + 1 ) ) = ( 𝐴 + 1 ) ) | |
| 18 | 16 17 | syl | ⊢ ( 𝐴 ∈ ℕ0 → ( ⌊ ‘ ( 𝐴 + 1 ) ) = ( 𝐴 + 1 ) ) |
| 19 | 18 | oveq2d | ⊢ ( 𝐴 ∈ ℕ0 → ( 1 ... ( ⌊ ‘ ( 𝐴 + 1 ) ) ) = ( 1 ... ( 𝐴 + 1 ) ) ) |
| 20 | 19 | sumeq1d | ⊢ ( 𝐴 ∈ ℕ0 → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 + 1 ) ) ) ( Λ ‘ 𝑛 ) = Σ 𝑛 ∈ ( 1 ... ( 𝐴 + 1 ) ) ( Λ ‘ 𝑛 ) ) |
| 21 | 14 20 | eqtrd | ⊢ ( 𝐴 ∈ ℕ0 → ( ψ ‘ ( 𝐴 + 1 ) ) = Σ 𝑛 ∈ ( 1 ... ( 𝐴 + 1 ) ) ( Λ ‘ 𝑛 ) ) |
| 22 | chpval | ⊢ ( 𝐴 ∈ ℝ → ( ψ ‘ 𝐴 ) = Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( Λ ‘ 𝑛 ) ) | |
| 23 | 11 22 | syl | ⊢ ( 𝐴 ∈ ℕ0 → ( ψ ‘ 𝐴 ) = Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( Λ ‘ 𝑛 ) ) |
| 24 | flid | ⊢ ( 𝐴 ∈ ℤ → ( ⌊ ‘ 𝐴 ) = 𝐴 ) | |
| 25 | 15 24 | syl | ⊢ ( 𝐴 ∈ ℕ0 → ( ⌊ ‘ 𝐴 ) = 𝐴 ) |
| 26 | nn0cn | ⊢ ( 𝐴 ∈ ℕ0 → 𝐴 ∈ ℂ ) | |
| 27 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 28 | pncan | ⊢ ( ( 𝐴 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝐴 + 1 ) − 1 ) = 𝐴 ) | |
| 29 | 26 27 28 | sylancl | ⊢ ( 𝐴 ∈ ℕ0 → ( ( 𝐴 + 1 ) − 1 ) = 𝐴 ) |
| 30 | 25 29 | eqtr4d | ⊢ ( 𝐴 ∈ ℕ0 → ( ⌊ ‘ 𝐴 ) = ( ( 𝐴 + 1 ) − 1 ) ) |
| 31 | 30 | oveq2d | ⊢ ( 𝐴 ∈ ℕ0 → ( 1 ... ( ⌊ ‘ 𝐴 ) ) = ( 1 ... ( ( 𝐴 + 1 ) − 1 ) ) ) |
| 32 | 31 | sumeq1d | ⊢ ( 𝐴 ∈ ℕ0 → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( Λ ‘ 𝑛 ) = Σ 𝑛 ∈ ( 1 ... ( ( 𝐴 + 1 ) − 1 ) ) ( Λ ‘ 𝑛 ) ) |
| 33 | 23 32 | eqtrd | ⊢ ( 𝐴 ∈ ℕ0 → ( ψ ‘ 𝐴 ) = Σ 𝑛 ∈ ( 1 ... ( ( 𝐴 + 1 ) − 1 ) ) ( Λ ‘ 𝑛 ) ) |
| 34 | 33 | oveq1d | ⊢ ( 𝐴 ∈ ℕ0 → ( ( ψ ‘ 𝐴 ) + ( Λ ‘ ( 𝐴 + 1 ) ) ) = ( Σ 𝑛 ∈ ( 1 ... ( ( 𝐴 + 1 ) − 1 ) ) ( Λ ‘ 𝑛 ) + ( Λ ‘ ( 𝐴 + 1 ) ) ) ) |
| 35 | 10 21 34 | 3eqtr4d | ⊢ ( 𝐴 ∈ ℕ0 → ( ψ ‘ ( 𝐴 + 1 ) ) = ( ( ψ ‘ 𝐴 ) + ( Λ ‘ ( 𝐴 + 1 ) ) ) ) |