This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Chebyshev function is weakly increasing. (Contributed by Mario Carneiro, 22-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | chtwordi | |- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( theta ` A ) <_ ( theta ` B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp2 | |- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> B e. RR ) |
|
| 2 | ppifi | |- ( B e. RR -> ( ( 0 [,] B ) i^i Prime ) e. Fin ) |
|
| 3 | 1 2 | syl | |- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( ( 0 [,] B ) i^i Prime ) e. Fin ) |
| 4 | simpr | |- ( ( ( A e. RR /\ B e. RR /\ A <_ B ) /\ p e. ( ( 0 [,] B ) i^i Prime ) ) -> p e. ( ( 0 [,] B ) i^i Prime ) ) |
|
| 5 | 4 | elin2d | |- ( ( ( A e. RR /\ B e. RR /\ A <_ B ) /\ p e. ( ( 0 [,] B ) i^i Prime ) ) -> p e. Prime ) |
| 6 | prmuz2 | |- ( p e. Prime -> p e. ( ZZ>= ` 2 ) ) |
|
| 7 | 5 6 | syl | |- ( ( ( A e. RR /\ B e. RR /\ A <_ B ) /\ p e. ( ( 0 [,] B ) i^i Prime ) ) -> p e. ( ZZ>= ` 2 ) ) |
| 8 | eluz2b2 | |- ( p e. ( ZZ>= ` 2 ) <-> ( p e. NN /\ 1 < p ) ) |
|
| 9 | 7 8 | sylib | |- ( ( ( A e. RR /\ B e. RR /\ A <_ B ) /\ p e. ( ( 0 [,] B ) i^i Prime ) ) -> ( p e. NN /\ 1 < p ) ) |
| 10 | 9 | simpld | |- ( ( ( A e. RR /\ B e. RR /\ A <_ B ) /\ p e. ( ( 0 [,] B ) i^i Prime ) ) -> p e. NN ) |
| 11 | 10 | nnred | |- ( ( ( A e. RR /\ B e. RR /\ A <_ B ) /\ p e. ( ( 0 [,] B ) i^i Prime ) ) -> p e. RR ) |
| 12 | 9 | simprd | |- ( ( ( A e. RR /\ B e. RR /\ A <_ B ) /\ p e. ( ( 0 [,] B ) i^i Prime ) ) -> 1 < p ) |
| 13 | 11 12 | rplogcld | |- ( ( ( A e. RR /\ B e. RR /\ A <_ B ) /\ p e. ( ( 0 [,] B ) i^i Prime ) ) -> ( log ` p ) e. RR+ ) |
| 14 | 13 | rpred | |- ( ( ( A e. RR /\ B e. RR /\ A <_ B ) /\ p e. ( ( 0 [,] B ) i^i Prime ) ) -> ( log ` p ) e. RR ) |
| 15 | 13 | rpge0d | |- ( ( ( A e. RR /\ B e. RR /\ A <_ B ) /\ p e. ( ( 0 [,] B ) i^i Prime ) ) -> 0 <_ ( log ` p ) ) |
| 16 | 0red | |- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> 0 e. RR ) |
|
| 17 | 0le0 | |- 0 <_ 0 |
|
| 18 | 17 | a1i | |- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> 0 <_ 0 ) |
| 19 | simp3 | |- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> A <_ B ) |
|
| 20 | iccss | |- ( ( ( 0 e. RR /\ B e. RR ) /\ ( 0 <_ 0 /\ A <_ B ) ) -> ( 0 [,] A ) C_ ( 0 [,] B ) ) |
|
| 21 | 16 1 18 19 20 | syl22anc | |- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( 0 [,] A ) C_ ( 0 [,] B ) ) |
| 22 | 21 | ssrind | |- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( ( 0 [,] A ) i^i Prime ) C_ ( ( 0 [,] B ) i^i Prime ) ) |
| 23 | 3 14 15 22 | fsumless | |- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> sum_ p e. ( ( 0 [,] A ) i^i Prime ) ( log ` p ) <_ sum_ p e. ( ( 0 [,] B ) i^i Prime ) ( log ` p ) ) |
| 24 | chtval | |- ( A e. RR -> ( theta ` A ) = sum_ p e. ( ( 0 [,] A ) i^i Prime ) ( log ` p ) ) |
|
| 25 | 24 | 3ad2ant1 | |- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( theta ` A ) = sum_ p e. ( ( 0 [,] A ) i^i Prime ) ( log ` p ) ) |
| 26 | chtval | |- ( B e. RR -> ( theta ` B ) = sum_ p e. ( ( 0 [,] B ) i^i Prime ) ( log ` p ) ) |
|
| 27 | 1 26 | syl | |- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( theta ` B ) = sum_ p e. ( ( 0 [,] B ) i^i Prime ) ( log ` p ) ) |
| 28 | 23 25 27 | 3brtr4d | |- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( theta ` A ) <_ ( theta ` B ) ) |