This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any cofinal subset of A is at least as large as ( cfA ) . (Contributed by Mario Carneiro, 24-Jun-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | cfslb.1 | |- A e. _V |
|
| Assertion | cfslb | |- ( ( Lim A /\ B C_ A /\ U. B = A ) -> ( cf ` A ) ~<_ B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cfslb.1 | |- A e. _V |
|
| 2 | fvex | |- ( card ` B ) e. _V |
|
| 3 | ssid | |- ( card ` B ) C_ ( card ` B ) |
|
| 4 | 1 | ssex | |- ( B C_ A -> B e. _V ) |
| 5 | 4 | ad2antrr | |- ( ( ( B C_ A /\ U. B = A ) /\ ( card ` B ) C_ ( card ` B ) ) -> B e. _V ) |
| 6 | velpw | |- ( x e. ~P A <-> x C_ A ) |
|
| 7 | sseq1 | |- ( x = B -> ( x C_ A <-> B C_ A ) ) |
|
| 8 | 6 7 | bitrid | |- ( x = B -> ( x e. ~P A <-> B C_ A ) ) |
| 9 | unieq | |- ( x = B -> U. x = U. B ) |
|
| 10 | 9 | eqeq1d | |- ( x = B -> ( U. x = A <-> U. B = A ) ) |
| 11 | 8 10 | anbi12d | |- ( x = B -> ( ( x e. ~P A /\ U. x = A ) <-> ( B C_ A /\ U. B = A ) ) ) |
| 12 | fveq2 | |- ( x = B -> ( card ` x ) = ( card ` B ) ) |
|
| 13 | 12 | sseq1d | |- ( x = B -> ( ( card ` x ) C_ ( card ` B ) <-> ( card ` B ) C_ ( card ` B ) ) ) |
| 14 | 11 13 | anbi12d | |- ( x = B -> ( ( ( x e. ~P A /\ U. x = A ) /\ ( card ` x ) C_ ( card ` B ) ) <-> ( ( B C_ A /\ U. B = A ) /\ ( card ` B ) C_ ( card ` B ) ) ) ) |
| 15 | 14 | spcegv | |- ( B e. _V -> ( ( ( B C_ A /\ U. B = A ) /\ ( card ` B ) C_ ( card ` B ) ) -> E. x ( ( x e. ~P A /\ U. x = A ) /\ ( card ` x ) C_ ( card ` B ) ) ) ) |
| 16 | 5 15 | mpcom | |- ( ( ( B C_ A /\ U. B = A ) /\ ( card ` B ) C_ ( card ` B ) ) -> E. x ( ( x e. ~P A /\ U. x = A ) /\ ( card ` x ) C_ ( card ` B ) ) ) |
| 17 | df-rex | |- ( E. x e. { x e. ~P A | U. x = A } ( card ` x ) C_ ( card ` B ) <-> E. x ( x e. { x e. ~P A | U. x = A } /\ ( card ` x ) C_ ( card ` B ) ) ) |
|
| 18 | rabid | |- ( x e. { x e. ~P A | U. x = A } <-> ( x e. ~P A /\ U. x = A ) ) |
|
| 19 | 18 | anbi1i | |- ( ( x e. { x e. ~P A | U. x = A } /\ ( card ` x ) C_ ( card ` B ) ) <-> ( ( x e. ~P A /\ U. x = A ) /\ ( card ` x ) C_ ( card ` B ) ) ) |
| 20 | 19 | exbii | |- ( E. x ( x e. { x e. ~P A | U. x = A } /\ ( card ` x ) C_ ( card ` B ) ) <-> E. x ( ( x e. ~P A /\ U. x = A ) /\ ( card ` x ) C_ ( card ` B ) ) ) |
| 21 | 17 20 | bitri | |- ( E. x e. { x e. ~P A | U. x = A } ( card ` x ) C_ ( card ` B ) <-> E. x ( ( x e. ~P A /\ U. x = A ) /\ ( card ` x ) C_ ( card ` B ) ) ) |
| 22 | 16 21 | sylibr | |- ( ( ( B C_ A /\ U. B = A ) /\ ( card ` B ) C_ ( card ` B ) ) -> E. x e. { x e. ~P A | U. x = A } ( card ` x ) C_ ( card ` B ) ) |
| 23 | 3 22 | mpan2 | |- ( ( B C_ A /\ U. B = A ) -> E. x e. { x e. ~P A | U. x = A } ( card ` x ) C_ ( card ` B ) ) |
| 24 | iinss | |- ( E. x e. { x e. ~P A | U. x = A } ( card ` x ) C_ ( card ` B ) -> |^|_ x e. { x e. ~P A | U. x = A } ( card ` x ) C_ ( card ` B ) ) |
|
| 25 | 23 24 | syl | |- ( ( B C_ A /\ U. B = A ) -> |^|_ x e. { x e. ~P A | U. x = A } ( card ` x ) C_ ( card ` B ) ) |
| 26 | 1 | cflim3 | |- ( Lim A -> ( cf ` A ) = |^|_ x e. { x e. ~P A | U. x = A } ( card ` x ) ) |
| 27 | 26 | sseq1d | |- ( Lim A -> ( ( cf ` A ) C_ ( card ` B ) <-> |^|_ x e. { x e. ~P A | U. x = A } ( card ` x ) C_ ( card ` B ) ) ) |
| 28 | 25 27 | imbitrrid | |- ( Lim A -> ( ( B C_ A /\ U. B = A ) -> ( cf ` A ) C_ ( card ` B ) ) ) |
| 29 | 28 | 3impib | |- ( ( Lim A /\ B C_ A /\ U. B = A ) -> ( cf ` A ) C_ ( card ` B ) ) |
| 30 | ssdomg | |- ( ( card ` B ) e. _V -> ( ( cf ` A ) C_ ( card ` B ) -> ( cf ` A ) ~<_ ( card ` B ) ) ) |
|
| 31 | 2 29 30 | mpsyl | |- ( ( Lim A /\ B C_ A /\ U. B = A ) -> ( cf ` A ) ~<_ ( card ` B ) ) |
| 32 | limord | |- ( Lim A -> Ord A ) |
|
| 33 | ordsson | |- ( Ord A -> A C_ On ) |
|
| 34 | 32 33 | syl | |- ( Lim A -> A C_ On ) |
| 35 | sstr2 | |- ( B C_ A -> ( A C_ On -> B C_ On ) ) |
|
| 36 | 34 35 | mpan9 | |- ( ( Lim A /\ B C_ A ) -> B C_ On ) |
| 37 | onssnum | |- ( ( B e. _V /\ B C_ On ) -> B e. dom card ) |
|
| 38 | 4 36 37 | syl2an2 | |- ( ( Lim A /\ B C_ A ) -> B e. dom card ) |
| 39 | cardid2 | |- ( B e. dom card -> ( card ` B ) ~~ B ) |
|
| 40 | 38 39 | syl | |- ( ( Lim A /\ B C_ A ) -> ( card ` B ) ~~ B ) |
| 41 | 40 | 3adant3 | |- ( ( Lim A /\ B C_ A /\ U. B = A ) -> ( card ` B ) ~~ B ) |
| 42 | domentr | |- ( ( ( cf ` A ) ~<_ ( card ` B ) /\ ( card ` B ) ~~ B ) -> ( cf ` A ) ~<_ B ) |
|
| 43 | 31 41 42 | syl2anc | |- ( ( Lim A /\ B C_ A /\ U. B = A ) -> ( cf ` A ) ~<_ B ) |