This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subset implication for an indexed intersection. (Contributed by NM, 15-Oct-2003) (Proof shortened by Andrew Salmon, 25-Jul-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iinss | |- ( E. x e. A B C_ C -> |^|_ x e. A B C_ C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eliin | |- ( y e. _V -> ( y e. |^|_ x e. A B <-> A. x e. A y e. B ) ) |
|
| 2 | 1 | elv | |- ( y e. |^|_ x e. A B <-> A. x e. A y e. B ) |
| 3 | ssel | |- ( B C_ C -> ( y e. B -> y e. C ) ) |
|
| 4 | 3 | reximi | |- ( E. x e. A B C_ C -> E. x e. A ( y e. B -> y e. C ) ) |
| 5 | r19.36v | |- ( E. x e. A ( y e. B -> y e. C ) -> ( A. x e. A y e. B -> y e. C ) ) |
|
| 6 | 4 5 | syl | |- ( E. x e. A B C_ C -> ( A. x e. A y e. B -> y e. C ) ) |
| 7 | 2 6 | biimtrid | |- ( E. x e. A B C_ C -> ( y e. |^|_ x e. A B -> y e. C ) ) |
| 8 | 7 | ssrdv | |- ( E. x e. A B C_ C -> |^|_ x e. A B C_ C ) |