This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any subset of A smaller than its cofinality has union less than A . (This is the contrapositive to cfslb .) (Contributed by Mario Carneiro, 24-Jun-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | cfslb.1 | |- A e. _V |
|
| Assertion | cfslbn | |- ( ( Lim A /\ B C_ A /\ B ~< ( cf ` A ) ) -> U. B e. A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cfslb.1 | |- A e. _V |
|
| 2 | uniss | |- ( B C_ A -> U. B C_ U. A ) |
|
| 3 | limuni | |- ( Lim A -> A = U. A ) |
|
| 4 | 3 | sseq2d | |- ( Lim A -> ( U. B C_ A <-> U. B C_ U. A ) ) |
| 5 | 2 4 | imbitrrid | |- ( Lim A -> ( B C_ A -> U. B C_ A ) ) |
| 6 | 5 | imp | |- ( ( Lim A /\ B C_ A ) -> U. B C_ A ) |
| 7 | limord | |- ( Lim A -> Ord A ) |
|
| 8 | ordsson | |- ( Ord A -> A C_ On ) |
|
| 9 | 7 8 | syl | |- ( Lim A -> A C_ On ) |
| 10 | sstr2 | |- ( B C_ A -> ( A C_ On -> B C_ On ) ) |
|
| 11 | 9 10 | syl5com | |- ( Lim A -> ( B C_ A -> B C_ On ) ) |
| 12 | ssorduni | |- ( B C_ On -> Ord U. B ) |
|
| 13 | 11 12 | syl6 | |- ( Lim A -> ( B C_ A -> Ord U. B ) ) |
| 14 | 13 7 | jctird | |- ( Lim A -> ( B C_ A -> ( Ord U. B /\ Ord A ) ) ) |
| 15 | ordsseleq | |- ( ( Ord U. B /\ Ord A ) -> ( U. B C_ A <-> ( U. B e. A \/ U. B = A ) ) ) |
|
| 16 | 14 15 | syl6 | |- ( Lim A -> ( B C_ A -> ( U. B C_ A <-> ( U. B e. A \/ U. B = A ) ) ) ) |
| 17 | 16 | imp | |- ( ( Lim A /\ B C_ A ) -> ( U. B C_ A <-> ( U. B e. A \/ U. B = A ) ) ) |
| 18 | 6 17 | mpbid | |- ( ( Lim A /\ B C_ A ) -> ( U. B e. A \/ U. B = A ) ) |
| 19 | 18 | ord | |- ( ( Lim A /\ B C_ A ) -> ( -. U. B e. A -> U. B = A ) ) |
| 20 | 1 | cfslb | |- ( ( Lim A /\ B C_ A /\ U. B = A ) -> ( cf ` A ) ~<_ B ) |
| 21 | domnsym | |- ( ( cf ` A ) ~<_ B -> -. B ~< ( cf ` A ) ) |
|
| 22 | 20 21 | syl | |- ( ( Lim A /\ B C_ A /\ U. B = A ) -> -. B ~< ( cf ` A ) ) |
| 23 | 22 | 3expia | |- ( ( Lim A /\ B C_ A ) -> ( U. B = A -> -. B ~< ( cf ` A ) ) ) |
| 24 | 19 23 | syld | |- ( ( Lim A /\ B C_ A ) -> ( -. U. B e. A -> -. B ~< ( cf ` A ) ) ) |
| 25 | 24 | con4d | |- ( ( Lim A /\ B C_ A ) -> ( B ~< ( cf ` A ) -> U. B e. A ) ) |
| 26 | 25 | 3impia | |- ( ( Lim A /\ B C_ A /\ B ~< ( cf ` A ) ) -> U. B e. A ) |