This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the opposite category. (Contributed by Mario Carneiro, 2-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | oppcval.b | |- B = ( Base ` C ) |
|
| oppcval.h | |- H = ( Hom ` C ) |
||
| oppcval.x | |- .x. = ( comp ` C ) |
||
| oppcval.o | |- O = ( oppCat ` C ) |
||
| Assertion | oppcval | |- ( C e. V -> O = ( ( C sSet <. ( Hom ` ndx ) , tpos H >. ) sSet <. ( comp ` ndx ) , ( u e. ( B X. B ) , z e. B |-> tpos ( <. z , ( 2nd ` u ) >. .x. ( 1st ` u ) ) ) >. ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oppcval.b | |- B = ( Base ` C ) |
|
| 2 | oppcval.h | |- H = ( Hom ` C ) |
|
| 3 | oppcval.x | |- .x. = ( comp ` C ) |
|
| 4 | oppcval.o | |- O = ( oppCat ` C ) |
|
| 5 | elex | |- ( C e. V -> C e. _V ) |
|
| 6 | id | |- ( c = C -> c = C ) |
|
| 7 | fveq2 | |- ( c = C -> ( Hom ` c ) = ( Hom ` C ) ) |
|
| 8 | 7 2 | eqtr4di | |- ( c = C -> ( Hom ` c ) = H ) |
| 9 | 8 | tposeqd | |- ( c = C -> tpos ( Hom ` c ) = tpos H ) |
| 10 | 9 | opeq2d | |- ( c = C -> <. ( Hom ` ndx ) , tpos ( Hom ` c ) >. = <. ( Hom ` ndx ) , tpos H >. ) |
| 11 | 6 10 | oveq12d | |- ( c = C -> ( c sSet <. ( Hom ` ndx ) , tpos ( Hom ` c ) >. ) = ( C sSet <. ( Hom ` ndx ) , tpos H >. ) ) |
| 12 | fveq2 | |- ( c = C -> ( Base ` c ) = ( Base ` C ) ) |
|
| 13 | 12 1 | eqtr4di | |- ( c = C -> ( Base ` c ) = B ) |
| 14 | 13 | sqxpeqd | |- ( c = C -> ( ( Base ` c ) X. ( Base ` c ) ) = ( B X. B ) ) |
| 15 | fveq2 | |- ( c = C -> ( comp ` c ) = ( comp ` C ) ) |
|
| 16 | 15 3 | eqtr4di | |- ( c = C -> ( comp ` c ) = .x. ) |
| 17 | 16 | oveqd | |- ( c = C -> ( <. z , ( 2nd ` u ) >. ( comp ` c ) ( 1st ` u ) ) = ( <. z , ( 2nd ` u ) >. .x. ( 1st ` u ) ) ) |
| 18 | 17 | tposeqd | |- ( c = C -> tpos ( <. z , ( 2nd ` u ) >. ( comp ` c ) ( 1st ` u ) ) = tpos ( <. z , ( 2nd ` u ) >. .x. ( 1st ` u ) ) ) |
| 19 | 14 13 18 | mpoeq123dv | |- ( c = C -> ( u e. ( ( Base ` c ) X. ( Base ` c ) ) , z e. ( Base ` c ) |-> tpos ( <. z , ( 2nd ` u ) >. ( comp ` c ) ( 1st ` u ) ) ) = ( u e. ( B X. B ) , z e. B |-> tpos ( <. z , ( 2nd ` u ) >. .x. ( 1st ` u ) ) ) ) |
| 20 | 19 | opeq2d | |- ( c = C -> <. ( comp ` ndx ) , ( u e. ( ( Base ` c ) X. ( Base ` c ) ) , z e. ( Base ` c ) |-> tpos ( <. z , ( 2nd ` u ) >. ( comp ` c ) ( 1st ` u ) ) ) >. = <. ( comp ` ndx ) , ( u e. ( B X. B ) , z e. B |-> tpos ( <. z , ( 2nd ` u ) >. .x. ( 1st ` u ) ) ) >. ) |
| 21 | 11 20 | oveq12d | |- ( c = C -> ( ( c sSet <. ( Hom ` ndx ) , tpos ( Hom ` c ) >. ) sSet <. ( comp ` ndx ) , ( u e. ( ( Base ` c ) X. ( Base ` c ) ) , z e. ( Base ` c ) |-> tpos ( <. z , ( 2nd ` u ) >. ( comp ` c ) ( 1st ` u ) ) ) >. ) = ( ( C sSet <. ( Hom ` ndx ) , tpos H >. ) sSet <. ( comp ` ndx ) , ( u e. ( B X. B ) , z e. B |-> tpos ( <. z , ( 2nd ` u ) >. .x. ( 1st ` u ) ) ) >. ) ) |
| 22 | df-oppc | |- oppCat = ( c e. _V |-> ( ( c sSet <. ( Hom ` ndx ) , tpos ( Hom ` c ) >. ) sSet <. ( comp ` ndx ) , ( u e. ( ( Base ` c ) X. ( Base ` c ) ) , z e. ( Base ` c ) |-> tpos ( <. z , ( 2nd ` u ) >. ( comp ` c ) ( 1st ` u ) ) ) >. ) ) |
|
| 23 | ovex | |- ( ( C sSet <. ( Hom ` ndx ) , tpos H >. ) sSet <. ( comp ` ndx ) , ( u e. ( B X. B ) , z e. B |-> tpos ( <. z , ( 2nd ` u ) >. .x. ( 1st ` u ) ) ) >. ) e. _V |
|
| 24 | 21 22 23 | fvmpt | |- ( C e. _V -> ( oppCat ` C ) = ( ( C sSet <. ( Hom ` ndx ) , tpos H >. ) sSet <. ( comp ` ndx ) , ( u e. ( B X. B ) , z e. B |-> tpos ( <. z , ( 2nd ` u ) >. .x. ( 1st ` u ) ) ) >. ) ) |
| 25 | 5 24 | syl | |- ( C e. V -> ( oppCat ` C ) = ( ( C sSet <. ( Hom ` ndx ) , tpos H >. ) sSet <. ( comp ` ndx ) , ( u e. ( B X. B ) , z e. B |-> tpos ( <. z , ( 2nd ` u ) >. .x. ( 1st ` u ) ) ) >. ) ) |
| 26 | 4 25 | eqtrid | |- ( C e. V -> O = ( ( C sSet <. ( Hom ` ndx ) , tpos H >. ) sSet <. ( comp ` ndx ) , ( u e. ( B X. B ) , z e. B |-> tpos ( <. z , ( 2nd ` u ) >. .x. ( 1st ` u ) ) ) >. ) ) |