This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A weak universe is closed under powerset. (Contributed by Mario Carneiro, 2-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | wununi.1 | |- ( ph -> U e. WUni ) |
|
| wununi.2 | |- ( ph -> A e. U ) |
||
| Assertion | wunpw | |- ( ph -> ~P A e. U ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wununi.1 | |- ( ph -> U e. WUni ) |
|
| 2 | wununi.2 | |- ( ph -> A e. U ) |
|
| 3 | pweq | |- ( x = A -> ~P x = ~P A ) |
|
| 4 | 3 | eleq1d | |- ( x = A -> ( ~P x e. U <-> ~P A e. U ) ) |
| 5 | iswun | |- ( U e. WUni -> ( U e. WUni <-> ( Tr U /\ U =/= (/) /\ A. x e. U ( U. x e. U /\ ~P x e. U /\ A. y e. U { x , y } e. U ) ) ) ) |
|
| 6 | 5 | ibi | |- ( U e. WUni -> ( Tr U /\ U =/= (/) /\ A. x e. U ( U. x e. U /\ ~P x e. U /\ A. y e. U { x , y } e. U ) ) ) |
| 7 | 6 | simp3d | |- ( U e. WUni -> A. x e. U ( U. x e. U /\ ~P x e. U /\ A. y e. U { x , y } e. U ) ) |
| 8 | simp2 | |- ( ( U. x e. U /\ ~P x e. U /\ A. y e. U { x , y } e. U ) -> ~P x e. U ) |
|
| 9 | 8 | ralimi | |- ( A. x e. U ( U. x e. U /\ ~P x e. U /\ A. y e. U { x , y } e. U ) -> A. x e. U ~P x e. U ) |
| 10 | 1 7 9 | 3syl | |- ( ph -> A. x e. U ~P x e. U ) |
| 11 | 4 10 2 | rspcdva | |- ( ph -> ~P A e. U ) |