This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A weak universe contains the empty set. (Contributed by Mario Carneiro, 2-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | wun0.1 | |- ( ph -> U e. WUni ) |
|
| Assertion | wun0 | |- ( ph -> (/) e. U ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wun0.1 | |- ( ph -> U e. WUni ) |
|
| 2 | iswun | |- ( U e. WUni -> ( U e. WUni <-> ( Tr U /\ U =/= (/) /\ A. x e. U ( U. x e. U /\ ~P x e. U /\ A. y e. U { x , y } e. U ) ) ) ) |
|
| 3 | 2 | ibi | |- ( U e. WUni -> ( Tr U /\ U =/= (/) /\ A. x e. U ( U. x e. U /\ ~P x e. U /\ A. y e. U { x , y } e. U ) ) ) |
| 4 | 3 | simp2d | |- ( U e. WUni -> U =/= (/) ) |
| 5 | 1 4 | syl | |- ( ph -> U =/= (/) ) |
| 6 | n0 | |- ( U =/= (/) <-> E. x x e. U ) |
|
| 7 | 5 6 | sylib | |- ( ph -> E. x x e. U ) |
| 8 | 1 | adantr | |- ( ( ph /\ x e. U ) -> U e. WUni ) |
| 9 | simpr | |- ( ( ph /\ x e. U ) -> x e. U ) |
|
| 10 | 0ss | |- (/) C_ x |
|
| 11 | 10 | a1i | |- ( ( ph /\ x e. U ) -> (/) C_ x ) |
| 12 | 8 9 11 | wunss | |- ( ( ph /\ x e. U ) -> (/) e. U ) |
| 13 | 7 12 | exlimddv | |- ( ph -> (/) e. U ) |