This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The transposition is a subset of a Cartesian product. (Contributed by Mario Carneiro, 12-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | tposssxp | |- tpos F C_ ( ( `' dom F u. { (/) } ) X. ran F ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-tpos | |- tpos F = ( F o. ( x e. ( `' dom F u. { (/) } ) |-> U. `' { x } ) ) |
|
| 2 | cossxp | |- ( F o. ( x e. ( `' dom F u. { (/) } ) |-> U. `' { x } ) ) C_ ( dom ( x e. ( `' dom F u. { (/) } ) |-> U. `' { x } ) X. ran F ) |
|
| 3 | 1 2 | eqsstri | |- tpos F C_ ( dom ( x e. ( `' dom F u. { (/) } ) |-> U. `' { x } ) X. ran F ) |
| 4 | eqid | |- ( x e. ( `' dom F u. { (/) } ) |-> U. `' { x } ) = ( x e. ( `' dom F u. { (/) } ) |-> U. `' { x } ) |
|
| 5 | 4 | dmmptss | |- dom ( x e. ( `' dom F u. { (/) } ) |-> U. `' { x } ) C_ ( `' dom F u. { (/) } ) |
| 6 | xpss1 | |- ( dom ( x e. ( `' dom F u. { (/) } ) |-> U. `' { x } ) C_ ( `' dom F u. { (/) } ) -> ( dom ( x e. ( `' dom F u. { (/) } ) |-> U. `' { x } ) X. ran F ) C_ ( ( `' dom F u. { (/) } ) X. ran F ) ) |
|
| 7 | 5 6 | ax-mp | |- ( dom ( x e. ( `' dom F u. { (/) } ) |-> U. `' { x } ) X. ran F ) C_ ( ( `' dom F u. { (/) } ) X. ran F ) |
| 8 | 3 7 | sstri | |- tpos F C_ ( ( `' dom F u. { (/) } ) X. ran F ) |