This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The category of categories for a weak universe is closed under the functor category operation. (Contributed by Mario Carneiro, 12-Jan-2017) (Proof shortened by AV, 14-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | catcfuccl.c | |- C = ( CatCat ` U ) |
|
| catcfuccl.b | |- B = ( Base ` C ) |
||
| catcfuccl.o | |- Q = ( X FuncCat Y ) |
||
| catcfuccl.u | |- ( ph -> U e. WUni ) |
||
| catcfuccl.1 | |- ( ph -> _om e. U ) |
||
| catcfuccl.x | |- ( ph -> X e. B ) |
||
| catcfuccl.y | |- ( ph -> Y e. B ) |
||
| Assertion | catcfuccl | |- ( ph -> Q e. B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | catcfuccl.c | |- C = ( CatCat ` U ) |
|
| 2 | catcfuccl.b | |- B = ( Base ` C ) |
|
| 3 | catcfuccl.o | |- Q = ( X FuncCat Y ) |
|
| 4 | catcfuccl.u | |- ( ph -> U e. WUni ) |
|
| 5 | catcfuccl.1 | |- ( ph -> _om e. U ) |
|
| 6 | catcfuccl.x | |- ( ph -> X e. B ) |
|
| 7 | catcfuccl.y | |- ( ph -> Y e. B ) |
|
| 8 | eqid | |- ( X Func Y ) = ( X Func Y ) |
|
| 9 | eqid | |- ( X Nat Y ) = ( X Nat Y ) |
|
| 10 | eqid | |- ( Base ` X ) = ( Base ` X ) |
|
| 11 | eqid | |- ( comp ` Y ) = ( comp ` Y ) |
|
| 12 | 1 2 4 | catcbas | |- ( ph -> B = ( U i^i Cat ) ) |
| 13 | 6 12 | eleqtrd | |- ( ph -> X e. ( U i^i Cat ) ) |
| 14 | 13 | elin2d | |- ( ph -> X e. Cat ) |
| 15 | 7 12 | eleqtrd | |- ( ph -> Y e. ( U i^i Cat ) ) |
| 16 | 15 | elin2d | |- ( ph -> Y e. Cat ) |
| 17 | eqidd | |- ( ph -> ( v e. ( ( X Func Y ) X. ( X Func Y ) ) , h e. ( X Func Y ) |-> [_ ( 1st ` v ) / f ]_ [_ ( 2nd ` v ) / g ]_ ( b e. ( g ( X Nat Y ) h ) , a e. ( f ( X Nat Y ) g ) |-> ( x e. ( Base ` X ) |-> ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` Y ) ( ( 1st ` h ) ` x ) ) ( a ` x ) ) ) ) ) = ( v e. ( ( X Func Y ) X. ( X Func Y ) ) , h e. ( X Func Y ) |-> [_ ( 1st ` v ) / f ]_ [_ ( 2nd ` v ) / g ]_ ( b e. ( g ( X Nat Y ) h ) , a e. ( f ( X Nat Y ) g ) |-> ( x e. ( Base ` X ) |-> ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` Y ) ( ( 1st ` h ) ` x ) ) ( a ` x ) ) ) ) ) ) |
|
| 18 | 3 8 9 10 11 14 16 17 | fucval | |- ( ph -> Q = { <. ( Base ` ndx ) , ( X Func Y ) >. , <. ( Hom ` ndx ) , ( X Nat Y ) >. , <. ( comp ` ndx ) , ( v e. ( ( X Func Y ) X. ( X Func Y ) ) , h e. ( X Func Y ) |-> [_ ( 1st ` v ) / f ]_ [_ ( 2nd ` v ) / g ]_ ( b e. ( g ( X Nat Y ) h ) , a e. ( f ( X Nat Y ) g ) |-> ( x e. ( Base ` X ) |-> ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` Y ) ( ( 1st ` h ) ` x ) ) ( a ` x ) ) ) ) ) >. } ) |
| 19 | baseid | |- Base = Slot ( Base ` ndx ) |
|
| 20 | 4 5 | wunndx | |- ( ph -> ndx e. U ) |
| 21 | 19 4 20 | wunstr | |- ( ph -> ( Base ` ndx ) e. U ) |
| 22 | 1 2 4 6 | catcbascl | |- ( ph -> X e. U ) |
| 23 | 1 2 4 7 | catcbascl | |- ( ph -> Y e. U ) |
| 24 | 4 22 23 | wunfunc | |- ( ph -> ( X Func Y ) e. U ) |
| 25 | 4 21 24 | wunop | |- ( ph -> <. ( Base ` ndx ) , ( X Func Y ) >. e. U ) |
| 26 | homid | |- Hom = Slot ( Hom ` ndx ) |
|
| 27 | 26 4 20 | wunstr | |- ( ph -> ( Hom ` ndx ) e. U ) |
| 28 | 4 22 23 | wunnat | |- ( ph -> ( X Nat Y ) e. U ) |
| 29 | 4 27 28 | wunop | |- ( ph -> <. ( Hom ` ndx ) , ( X Nat Y ) >. e. U ) |
| 30 | ccoid | |- comp = Slot ( comp ` ndx ) |
|
| 31 | 30 4 20 | wunstr | |- ( ph -> ( comp ` ndx ) e. U ) |
| 32 | 4 24 24 | wunxp | |- ( ph -> ( ( X Func Y ) X. ( X Func Y ) ) e. U ) |
| 33 | 4 32 24 | wunxp | |- ( ph -> ( ( ( X Func Y ) X. ( X Func Y ) ) X. ( X Func Y ) ) e. U ) |
| 34 | 1 2 4 7 | catcccocl | |- ( ph -> ( comp ` Y ) e. U ) |
| 35 | 4 34 | wunrn | |- ( ph -> ran ( comp ` Y ) e. U ) |
| 36 | 4 35 | wununi | |- ( ph -> U. ran ( comp ` Y ) e. U ) |
| 37 | 4 36 | wunrn | |- ( ph -> ran U. ran ( comp ` Y ) e. U ) |
| 38 | 4 37 | wununi | |- ( ph -> U. ran U. ran ( comp ` Y ) e. U ) |
| 39 | 4 38 | wunpw | |- ( ph -> ~P U. ran U. ran ( comp ` Y ) e. U ) |
| 40 | 1 2 4 6 | catcbaselcl | |- ( ph -> ( Base ` X ) e. U ) |
| 41 | 4 39 40 | wunmap | |- ( ph -> ( ~P U. ran U. ran ( comp ` Y ) ^m ( Base ` X ) ) e. U ) |
| 42 | 4 28 | wunrn | |- ( ph -> ran ( X Nat Y ) e. U ) |
| 43 | 4 42 | wununi | |- ( ph -> U. ran ( X Nat Y ) e. U ) |
| 44 | 4 43 43 | wunxp | |- ( ph -> ( U. ran ( X Nat Y ) X. U. ran ( X Nat Y ) ) e. U ) |
| 45 | 4 41 44 | wunpm | |- ( ph -> ( ( ~P U. ran U. ran ( comp ` Y ) ^m ( Base ` X ) ) ^pm ( U. ran ( X Nat Y ) X. U. ran ( X Nat Y ) ) ) e. U ) |
| 46 | fvex | |- ( 1st ` v ) e. _V |
|
| 47 | fvex | |- ( 2nd ` v ) e. _V |
|
| 48 | ovex | |- ( ~P U. ran U. ran ( comp ` Y ) ^m ( Base ` X ) ) e. _V |
|
| 49 | ovex | |- ( X Nat Y ) e. _V |
|
| 50 | 49 | rnex | |- ran ( X Nat Y ) e. _V |
| 51 | 50 | uniex | |- U. ran ( X Nat Y ) e. _V |
| 52 | 51 51 | xpex | |- ( U. ran ( X Nat Y ) X. U. ran ( X Nat Y ) ) e. _V |
| 53 | eqid | |- ( x e. ( Base ` X ) |-> ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` Y ) ( ( 1st ` h ) ` x ) ) ( a ` x ) ) ) = ( x e. ( Base ` X ) |-> ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` Y ) ( ( 1st ` h ) ` x ) ) ( a ` x ) ) ) |
|
| 54 | ovssunirn | |- ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` Y ) ( ( 1st ` h ) ` x ) ) ( a ` x ) ) C_ U. ran ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` Y ) ( ( 1st ` h ) ` x ) ) |
|
| 55 | ovssunirn | |- ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` Y ) ( ( 1st ` h ) ` x ) ) C_ U. ran ( comp ` Y ) |
|
| 56 | rnss | |- ( ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` Y ) ( ( 1st ` h ) ` x ) ) C_ U. ran ( comp ` Y ) -> ran ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` Y ) ( ( 1st ` h ) ` x ) ) C_ ran U. ran ( comp ` Y ) ) |
|
| 57 | uniss | |- ( ran ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` Y ) ( ( 1st ` h ) ` x ) ) C_ ran U. ran ( comp ` Y ) -> U. ran ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` Y ) ( ( 1st ` h ) ` x ) ) C_ U. ran U. ran ( comp ` Y ) ) |
|
| 58 | 55 56 57 | mp2b | |- U. ran ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` Y ) ( ( 1st ` h ) ` x ) ) C_ U. ran U. ran ( comp ` Y ) |
| 59 | 54 58 | sstri | |- ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` Y ) ( ( 1st ` h ) ` x ) ) ( a ` x ) ) C_ U. ran U. ran ( comp ` Y ) |
| 60 | ovex | |- ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` Y ) ( ( 1st ` h ) ` x ) ) ( a ` x ) ) e. _V |
|
| 61 | 60 | elpw | |- ( ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` Y ) ( ( 1st ` h ) ` x ) ) ( a ` x ) ) e. ~P U. ran U. ran ( comp ` Y ) <-> ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` Y ) ( ( 1st ` h ) ` x ) ) ( a ` x ) ) C_ U. ran U. ran ( comp ` Y ) ) |
| 62 | 59 61 | mpbir | |- ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` Y ) ( ( 1st ` h ) ` x ) ) ( a ` x ) ) e. ~P U. ran U. ran ( comp ` Y ) |
| 63 | 62 | a1i | |- ( x e. ( Base ` X ) -> ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` Y ) ( ( 1st ` h ) ` x ) ) ( a ` x ) ) e. ~P U. ran U. ran ( comp ` Y ) ) |
| 64 | 53 63 | fmpti | |- ( x e. ( Base ` X ) |-> ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` Y ) ( ( 1st ` h ) ` x ) ) ( a ` x ) ) ) : ( Base ` X ) --> ~P U. ran U. ran ( comp ` Y ) |
| 65 | fvex | |- ( comp ` Y ) e. _V |
|
| 66 | 65 | rnex | |- ran ( comp ` Y ) e. _V |
| 67 | 66 | uniex | |- U. ran ( comp ` Y ) e. _V |
| 68 | 67 | rnex | |- ran U. ran ( comp ` Y ) e. _V |
| 69 | 68 | uniex | |- U. ran U. ran ( comp ` Y ) e. _V |
| 70 | 69 | pwex | |- ~P U. ran U. ran ( comp ` Y ) e. _V |
| 71 | fvex | |- ( Base ` X ) e. _V |
|
| 72 | 70 71 | elmap | |- ( ( x e. ( Base ` X ) |-> ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` Y ) ( ( 1st ` h ) ` x ) ) ( a ` x ) ) ) e. ( ~P U. ran U. ran ( comp ` Y ) ^m ( Base ` X ) ) <-> ( x e. ( Base ` X ) |-> ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` Y ) ( ( 1st ` h ) ` x ) ) ( a ` x ) ) ) : ( Base ` X ) --> ~P U. ran U. ran ( comp ` Y ) ) |
| 73 | 64 72 | mpbir | |- ( x e. ( Base ` X ) |-> ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` Y ) ( ( 1st ` h ) ` x ) ) ( a ` x ) ) ) e. ( ~P U. ran U. ran ( comp ` Y ) ^m ( Base ` X ) ) |
| 74 | 73 | rgen2w | |- A. b e. ( g ( X Nat Y ) h ) A. a e. ( f ( X Nat Y ) g ) ( x e. ( Base ` X ) |-> ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` Y ) ( ( 1st ` h ) ` x ) ) ( a ` x ) ) ) e. ( ~P U. ran U. ran ( comp ` Y ) ^m ( Base ` X ) ) |
| 75 | eqid | |- ( b e. ( g ( X Nat Y ) h ) , a e. ( f ( X Nat Y ) g ) |-> ( x e. ( Base ` X ) |-> ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` Y ) ( ( 1st ` h ) ` x ) ) ( a ` x ) ) ) ) = ( b e. ( g ( X Nat Y ) h ) , a e. ( f ( X Nat Y ) g ) |-> ( x e. ( Base ` X ) |-> ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` Y ) ( ( 1st ` h ) ` x ) ) ( a ` x ) ) ) ) |
|
| 76 | 75 | fmpo | |- ( A. b e. ( g ( X Nat Y ) h ) A. a e. ( f ( X Nat Y ) g ) ( x e. ( Base ` X ) |-> ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` Y ) ( ( 1st ` h ) ` x ) ) ( a ` x ) ) ) e. ( ~P U. ran U. ran ( comp ` Y ) ^m ( Base ` X ) ) <-> ( b e. ( g ( X Nat Y ) h ) , a e. ( f ( X Nat Y ) g ) |-> ( x e. ( Base ` X ) |-> ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` Y ) ( ( 1st ` h ) ` x ) ) ( a ` x ) ) ) ) : ( ( g ( X Nat Y ) h ) X. ( f ( X Nat Y ) g ) ) --> ( ~P U. ran U. ran ( comp ` Y ) ^m ( Base ` X ) ) ) |
| 77 | 74 76 | mpbi | |- ( b e. ( g ( X Nat Y ) h ) , a e. ( f ( X Nat Y ) g ) |-> ( x e. ( Base ` X ) |-> ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` Y ) ( ( 1st ` h ) ` x ) ) ( a ` x ) ) ) ) : ( ( g ( X Nat Y ) h ) X. ( f ( X Nat Y ) g ) ) --> ( ~P U. ran U. ran ( comp ` Y ) ^m ( Base ` X ) ) |
| 78 | ovssunirn | |- ( g ( X Nat Y ) h ) C_ U. ran ( X Nat Y ) |
|
| 79 | ovssunirn | |- ( f ( X Nat Y ) g ) C_ U. ran ( X Nat Y ) |
|
| 80 | xpss12 | |- ( ( ( g ( X Nat Y ) h ) C_ U. ran ( X Nat Y ) /\ ( f ( X Nat Y ) g ) C_ U. ran ( X Nat Y ) ) -> ( ( g ( X Nat Y ) h ) X. ( f ( X Nat Y ) g ) ) C_ ( U. ran ( X Nat Y ) X. U. ran ( X Nat Y ) ) ) |
|
| 81 | 78 79 80 | mp2an | |- ( ( g ( X Nat Y ) h ) X. ( f ( X Nat Y ) g ) ) C_ ( U. ran ( X Nat Y ) X. U. ran ( X Nat Y ) ) |
| 82 | elpm2r | |- ( ( ( ( ~P U. ran U. ran ( comp ` Y ) ^m ( Base ` X ) ) e. _V /\ ( U. ran ( X Nat Y ) X. U. ran ( X Nat Y ) ) e. _V ) /\ ( ( b e. ( g ( X Nat Y ) h ) , a e. ( f ( X Nat Y ) g ) |-> ( x e. ( Base ` X ) |-> ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` Y ) ( ( 1st ` h ) ` x ) ) ( a ` x ) ) ) ) : ( ( g ( X Nat Y ) h ) X. ( f ( X Nat Y ) g ) ) --> ( ~P U. ran U. ran ( comp ` Y ) ^m ( Base ` X ) ) /\ ( ( g ( X Nat Y ) h ) X. ( f ( X Nat Y ) g ) ) C_ ( U. ran ( X Nat Y ) X. U. ran ( X Nat Y ) ) ) ) -> ( b e. ( g ( X Nat Y ) h ) , a e. ( f ( X Nat Y ) g ) |-> ( x e. ( Base ` X ) |-> ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` Y ) ( ( 1st ` h ) ` x ) ) ( a ` x ) ) ) ) e. ( ( ~P U. ran U. ran ( comp ` Y ) ^m ( Base ` X ) ) ^pm ( U. ran ( X Nat Y ) X. U. ran ( X Nat Y ) ) ) ) |
|
| 83 | 48 52 77 81 82 | mp4an | |- ( b e. ( g ( X Nat Y ) h ) , a e. ( f ( X Nat Y ) g ) |-> ( x e. ( Base ` X ) |-> ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` Y ) ( ( 1st ` h ) ` x ) ) ( a ` x ) ) ) ) e. ( ( ~P U. ran U. ran ( comp ` Y ) ^m ( Base ` X ) ) ^pm ( U. ran ( X Nat Y ) X. U. ran ( X Nat Y ) ) ) |
| 84 | 83 | sbcth | |- ( ( 2nd ` v ) e. _V -> [. ( 2nd ` v ) / g ]. ( b e. ( g ( X Nat Y ) h ) , a e. ( f ( X Nat Y ) g ) |-> ( x e. ( Base ` X ) |-> ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` Y ) ( ( 1st ` h ) ` x ) ) ( a ` x ) ) ) ) e. ( ( ~P U. ran U. ran ( comp ` Y ) ^m ( Base ` X ) ) ^pm ( U. ran ( X Nat Y ) X. U. ran ( X Nat Y ) ) ) ) |
| 85 | sbcel1g | |- ( ( 2nd ` v ) e. _V -> ( [. ( 2nd ` v ) / g ]. ( b e. ( g ( X Nat Y ) h ) , a e. ( f ( X Nat Y ) g ) |-> ( x e. ( Base ` X ) |-> ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` Y ) ( ( 1st ` h ) ` x ) ) ( a ` x ) ) ) ) e. ( ( ~P U. ran U. ran ( comp ` Y ) ^m ( Base ` X ) ) ^pm ( U. ran ( X Nat Y ) X. U. ran ( X Nat Y ) ) ) <-> [_ ( 2nd ` v ) / g ]_ ( b e. ( g ( X Nat Y ) h ) , a e. ( f ( X Nat Y ) g ) |-> ( x e. ( Base ` X ) |-> ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` Y ) ( ( 1st ` h ) ` x ) ) ( a ` x ) ) ) ) e. ( ( ~P U. ran U. ran ( comp ` Y ) ^m ( Base ` X ) ) ^pm ( U. ran ( X Nat Y ) X. U. ran ( X Nat Y ) ) ) ) ) |
|
| 86 | 84 85 | mpbid | |- ( ( 2nd ` v ) e. _V -> [_ ( 2nd ` v ) / g ]_ ( b e. ( g ( X Nat Y ) h ) , a e. ( f ( X Nat Y ) g ) |-> ( x e. ( Base ` X ) |-> ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` Y ) ( ( 1st ` h ) ` x ) ) ( a ` x ) ) ) ) e. ( ( ~P U. ran U. ran ( comp ` Y ) ^m ( Base ` X ) ) ^pm ( U. ran ( X Nat Y ) X. U. ran ( X Nat Y ) ) ) ) |
| 87 | 47 86 | ax-mp | |- [_ ( 2nd ` v ) / g ]_ ( b e. ( g ( X Nat Y ) h ) , a e. ( f ( X Nat Y ) g ) |-> ( x e. ( Base ` X ) |-> ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` Y ) ( ( 1st ` h ) ` x ) ) ( a ` x ) ) ) ) e. ( ( ~P U. ran U. ran ( comp ` Y ) ^m ( Base ` X ) ) ^pm ( U. ran ( X Nat Y ) X. U. ran ( X Nat Y ) ) ) |
| 88 | 87 | sbcth | |- ( ( 1st ` v ) e. _V -> [. ( 1st ` v ) / f ]. [_ ( 2nd ` v ) / g ]_ ( b e. ( g ( X Nat Y ) h ) , a e. ( f ( X Nat Y ) g ) |-> ( x e. ( Base ` X ) |-> ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` Y ) ( ( 1st ` h ) ` x ) ) ( a ` x ) ) ) ) e. ( ( ~P U. ran U. ran ( comp ` Y ) ^m ( Base ` X ) ) ^pm ( U. ran ( X Nat Y ) X. U. ran ( X Nat Y ) ) ) ) |
| 89 | sbcel1g | |- ( ( 1st ` v ) e. _V -> ( [. ( 1st ` v ) / f ]. [_ ( 2nd ` v ) / g ]_ ( b e. ( g ( X Nat Y ) h ) , a e. ( f ( X Nat Y ) g ) |-> ( x e. ( Base ` X ) |-> ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` Y ) ( ( 1st ` h ) ` x ) ) ( a ` x ) ) ) ) e. ( ( ~P U. ran U. ran ( comp ` Y ) ^m ( Base ` X ) ) ^pm ( U. ran ( X Nat Y ) X. U. ran ( X Nat Y ) ) ) <-> [_ ( 1st ` v ) / f ]_ [_ ( 2nd ` v ) / g ]_ ( b e. ( g ( X Nat Y ) h ) , a e. ( f ( X Nat Y ) g ) |-> ( x e. ( Base ` X ) |-> ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` Y ) ( ( 1st ` h ) ` x ) ) ( a ` x ) ) ) ) e. ( ( ~P U. ran U. ran ( comp ` Y ) ^m ( Base ` X ) ) ^pm ( U. ran ( X Nat Y ) X. U. ran ( X Nat Y ) ) ) ) ) |
|
| 90 | 88 89 | mpbid | |- ( ( 1st ` v ) e. _V -> [_ ( 1st ` v ) / f ]_ [_ ( 2nd ` v ) / g ]_ ( b e. ( g ( X Nat Y ) h ) , a e. ( f ( X Nat Y ) g ) |-> ( x e. ( Base ` X ) |-> ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` Y ) ( ( 1st ` h ) ` x ) ) ( a ` x ) ) ) ) e. ( ( ~P U. ran U. ran ( comp ` Y ) ^m ( Base ` X ) ) ^pm ( U. ran ( X Nat Y ) X. U. ran ( X Nat Y ) ) ) ) |
| 91 | 46 90 | ax-mp | |- [_ ( 1st ` v ) / f ]_ [_ ( 2nd ` v ) / g ]_ ( b e. ( g ( X Nat Y ) h ) , a e. ( f ( X Nat Y ) g ) |-> ( x e. ( Base ` X ) |-> ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` Y ) ( ( 1st ` h ) ` x ) ) ( a ` x ) ) ) ) e. ( ( ~P U. ran U. ran ( comp ` Y ) ^m ( Base ` X ) ) ^pm ( U. ran ( X Nat Y ) X. U. ran ( X Nat Y ) ) ) |
| 92 | 91 | rgen2w | |- A. v e. ( ( X Func Y ) X. ( X Func Y ) ) A. h e. ( X Func Y ) [_ ( 1st ` v ) / f ]_ [_ ( 2nd ` v ) / g ]_ ( b e. ( g ( X Nat Y ) h ) , a e. ( f ( X Nat Y ) g ) |-> ( x e. ( Base ` X ) |-> ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` Y ) ( ( 1st ` h ) ` x ) ) ( a ` x ) ) ) ) e. ( ( ~P U. ran U. ran ( comp ` Y ) ^m ( Base ` X ) ) ^pm ( U. ran ( X Nat Y ) X. U. ran ( X Nat Y ) ) ) |
| 93 | eqid | |- ( v e. ( ( X Func Y ) X. ( X Func Y ) ) , h e. ( X Func Y ) |-> [_ ( 1st ` v ) / f ]_ [_ ( 2nd ` v ) / g ]_ ( b e. ( g ( X Nat Y ) h ) , a e. ( f ( X Nat Y ) g ) |-> ( x e. ( Base ` X ) |-> ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` Y ) ( ( 1st ` h ) ` x ) ) ( a ` x ) ) ) ) ) = ( v e. ( ( X Func Y ) X. ( X Func Y ) ) , h e. ( X Func Y ) |-> [_ ( 1st ` v ) / f ]_ [_ ( 2nd ` v ) / g ]_ ( b e. ( g ( X Nat Y ) h ) , a e. ( f ( X Nat Y ) g ) |-> ( x e. ( Base ` X ) |-> ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` Y ) ( ( 1st ` h ) ` x ) ) ( a ` x ) ) ) ) ) |
|
| 94 | 93 | fmpo | |- ( A. v e. ( ( X Func Y ) X. ( X Func Y ) ) A. h e. ( X Func Y ) [_ ( 1st ` v ) / f ]_ [_ ( 2nd ` v ) / g ]_ ( b e. ( g ( X Nat Y ) h ) , a e. ( f ( X Nat Y ) g ) |-> ( x e. ( Base ` X ) |-> ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` Y ) ( ( 1st ` h ) ` x ) ) ( a ` x ) ) ) ) e. ( ( ~P U. ran U. ran ( comp ` Y ) ^m ( Base ` X ) ) ^pm ( U. ran ( X Nat Y ) X. U. ran ( X Nat Y ) ) ) <-> ( v e. ( ( X Func Y ) X. ( X Func Y ) ) , h e. ( X Func Y ) |-> [_ ( 1st ` v ) / f ]_ [_ ( 2nd ` v ) / g ]_ ( b e. ( g ( X Nat Y ) h ) , a e. ( f ( X Nat Y ) g ) |-> ( x e. ( Base ` X ) |-> ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` Y ) ( ( 1st ` h ) ` x ) ) ( a ` x ) ) ) ) ) : ( ( ( X Func Y ) X. ( X Func Y ) ) X. ( X Func Y ) ) --> ( ( ~P U. ran U. ran ( comp ` Y ) ^m ( Base ` X ) ) ^pm ( U. ran ( X Nat Y ) X. U. ran ( X Nat Y ) ) ) ) |
| 95 | 92 94 | mpbi | |- ( v e. ( ( X Func Y ) X. ( X Func Y ) ) , h e. ( X Func Y ) |-> [_ ( 1st ` v ) / f ]_ [_ ( 2nd ` v ) / g ]_ ( b e. ( g ( X Nat Y ) h ) , a e. ( f ( X Nat Y ) g ) |-> ( x e. ( Base ` X ) |-> ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` Y ) ( ( 1st ` h ) ` x ) ) ( a ` x ) ) ) ) ) : ( ( ( X Func Y ) X. ( X Func Y ) ) X. ( X Func Y ) ) --> ( ( ~P U. ran U. ran ( comp ` Y ) ^m ( Base ` X ) ) ^pm ( U. ran ( X Nat Y ) X. U. ran ( X Nat Y ) ) ) |
| 96 | 95 | a1i | |- ( ph -> ( v e. ( ( X Func Y ) X. ( X Func Y ) ) , h e. ( X Func Y ) |-> [_ ( 1st ` v ) / f ]_ [_ ( 2nd ` v ) / g ]_ ( b e. ( g ( X Nat Y ) h ) , a e. ( f ( X Nat Y ) g ) |-> ( x e. ( Base ` X ) |-> ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` Y ) ( ( 1st ` h ) ` x ) ) ( a ` x ) ) ) ) ) : ( ( ( X Func Y ) X. ( X Func Y ) ) X. ( X Func Y ) ) --> ( ( ~P U. ran U. ran ( comp ` Y ) ^m ( Base ` X ) ) ^pm ( U. ran ( X Nat Y ) X. U. ran ( X Nat Y ) ) ) ) |
| 97 | 4 33 45 96 | wunf | |- ( ph -> ( v e. ( ( X Func Y ) X. ( X Func Y ) ) , h e. ( X Func Y ) |-> [_ ( 1st ` v ) / f ]_ [_ ( 2nd ` v ) / g ]_ ( b e. ( g ( X Nat Y ) h ) , a e. ( f ( X Nat Y ) g ) |-> ( x e. ( Base ` X ) |-> ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` Y ) ( ( 1st ` h ) ` x ) ) ( a ` x ) ) ) ) ) e. U ) |
| 98 | 4 31 97 | wunop | |- ( ph -> <. ( comp ` ndx ) , ( v e. ( ( X Func Y ) X. ( X Func Y ) ) , h e. ( X Func Y ) |-> [_ ( 1st ` v ) / f ]_ [_ ( 2nd ` v ) / g ]_ ( b e. ( g ( X Nat Y ) h ) , a e. ( f ( X Nat Y ) g ) |-> ( x e. ( Base ` X ) |-> ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` Y ) ( ( 1st ` h ) ` x ) ) ( a ` x ) ) ) ) ) >. e. U ) |
| 99 | 4 25 29 98 | wuntp | |- ( ph -> { <. ( Base ` ndx ) , ( X Func Y ) >. , <. ( Hom ` ndx ) , ( X Nat Y ) >. , <. ( comp ` ndx ) , ( v e. ( ( X Func Y ) X. ( X Func Y ) ) , h e. ( X Func Y ) |-> [_ ( 1st ` v ) / f ]_ [_ ( 2nd ` v ) / g ]_ ( b e. ( g ( X Nat Y ) h ) , a e. ( f ( X Nat Y ) g ) |-> ( x e. ( Base ` X ) |-> ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` Y ) ( ( 1st ` h ) ` x ) ) ( a ` x ) ) ) ) ) >. } e. U ) |
| 100 | 18 99 | eqeltrd | |- ( ph -> Q e. U ) |
| 101 | 3 14 16 | fuccat | |- ( ph -> Q e. Cat ) |
| 102 | 100 101 | elind | |- ( ph -> Q e. ( U i^i Cat ) ) |
| 103 | 102 12 | eleqtrrd | |- ( ph -> Q e. B ) |