This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The support of a function is empty iff it is identically zero. (Contributed by Stefan O'Rear, 22-Mar-2015) (Revised by AV, 28-May-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fnsuppeq0 | |- ( ( F Fn A /\ A e. W /\ Z e. V ) -> ( ( F supp Z ) = (/) <-> F = ( A X. { Z } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ss0b | |- ( ( F supp Z ) C_ (/) <-> ( F supp Z ) = (/) ) |
|
| 2 | un0 | |- ( A u. (/) ) = A |
|
| 3 | uncom | |- ( A u. (/) ) = ( (/) u. A ) |
|
| 4 | 2 3 | eqtr3i | |- A = ( (/) u. A ) |
| 5 | 4 | fneq2i | |- ( F Fn A <-> F Fn ( (/) u. A ) ) |
| 6 | 5 | biimpi | |- ( F Fn A -> F Fn ( (/) u. A ) ) |
| 7 | 6 | 3ad2ant1 | |- ( ( F Fn A /\ A e. W /\ Z e. V ) -> F Fn ( (/) u. A ) ) |
| 8 | fnex | |- ( ( F Fn A /\ A e. W ) -> F e. _V ) |
|
| 9 | 8 | 3adant3 | |- ( ( F Fn A /\ A e. W /\ Z e. V ) -> F e. _V ) |
| 10 | simp3 | |- ( ( F Fn A /\ A e. W /\ Z e. V ) -> Z e. V ) |
|
| 11 | 0in | |- ( (/) i^i A ) = (/) |
|
| 12 | 11 | a1i | |- ( ( F Fn A /\ A e. W /\ Z e. V ) -> ( (/) i^i A ) = (/) ) |
| 13 | fnsuppres | |- ( ( F Fn ( (/) u. A ) /\ ( F e. _V /\ Z e. V ) /\ ( (/) i^i A ) = (/) ) -> ( ( F supp Z ) C_ (/) <-> ( F |` A ) = ( A X. { Z } ) ) ) |
|
| 14 | 7 9 10 12 13 | syl121anc | |- ( ( F Fn A /\ A e. W /\ Z e. V ) -> ( ( F supp Z ) C_ (/) <-> ( F |` A ) = ( A X. { Z } ) ) ) |
| 15 | 1 14 | bitr3id | |- ( ( F Fn A /\ A e. W /\ Z e. V ) -> ( ( F supp Z ) = (/) <-> ( F |` A ) = ( A X. { Z } ) ) ) |
| 16 | fnresdm | |- ( F Fn A -> ( F |` A ) = F ) |
|
| 17 | 16 | 3ad2ant1 | |- ( ( F Fn A /\ A e. W /\ Z e. V ) -> ( F |` A ) = F ) |
| 18 | 17 | eqeq1d | |- ( ( F Fn A /\ A e. W /\ Z e. V ) -> ( ( F |` A ) = ( A X. { Z } ) <-> F = ( A X. { Z } ) ) ) |
| 19 | 15 18 | bitrd | |- ( ( F Fn A /\ A e. W /\ Z e. V ) -> ( ( F supp Z ) = (/) <-> F = ( A X. { Z } ) ) ) |