This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Adding and subtracting one gives back the original cardinality. Similar to pncan for cardinalities. (Contributed by Mario Carneiro, 18-May-2015) (Revised by Jim Kingdon, 20-Aug-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dju1dif | |- ( ( A e. V /\ B e. ( A |_| 1o ) ) -> ( ( A |_| 1o ) \ { B } ) ~~ A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | |- ( ( A e. V /\ B e. ( A |_| 1o ) ) -> A e. V ) |
|
| 2 | 1oex | |- 1o e. _V |
|
| 3 | djuex | |- ( ( A e. V /\ 1o e. _V ) -> ( A |_| 1o ) e. _V ) |
|
| 4 | 1 2 3 | sylancl | |- ( ( A e. V /\ B e. ( A |_| 1o ) ) -> ( A |_| 1o ) e. _V ) |
| 5 | simpr | |- ( ( A e. V /\ B e. ( A |_| 1o ) ) -> B e. ( A |_| 1o ) ) |
|
| 6 | df1o2 | |- 1o = { (/) } |
|
| 7 | 6 | xpeq2i | |- ( { 1o } X. 1o ) = ( { 1o } X. { (/) } ) |
| 8 | 0ex | |- (/) e. _V |
|
| 9 | 2 8 | xpsn | |- ( { 1o } X. { (/) } ) = { <. 1o , (/) >. } |
| 10 | 7 9 | eqtri | |- ( { 1o } X. 1o ) = { <. 1o , (/) >. } |
| 11 | ssun2 | |- ( { 1o } X. 1o ) C_ ( ( { (/) } X. A ) u. ( { 1o } X. 1o ) ) |
|
| 12 | 10 11 | eqsstrri | |- { <. 1o , (/) >. } C_ ( ( { (/) } X. A ) u. ( { 1o } X. 1o ) ) |
| 13 | opex | |- <. 1o , (/) >. e. _V |
|
| 14 | 13 | snss | |- ( <. 1o , (/) >. e. ( ( { (/) } X. A ) u. ( { 1o } X. 1o ) ) <-> { <. 1o , (/) >. } C_ ( ( { (/) } X. A ) u. ( { 1o } X. 1o ) ) ) |
| 15 | 12 14 | mpbir | |- <. 1o , (/) >. e. ( ( { (/) } X. A ) u. ( { 1o } X. 1o ) ) |
| 16 | df-dju | |- ( A |_| 1o ) = ( ( { (/) } X. A ) u. ( { 1o } X. 1o ) ) |
|
| 17 | 15 16 | eleqtrri | |- <. 1o , (/) >. e. ( A |_| 1o ) |
| 18 | 17 | a1i | |- ( ( A e. V /\ B e. ( A |_| 1o ) ) -> <. 1o , (/) >. e. ( A |_| 1o ) ) |
| 19 | difsnen | |- ( ( ( A |_| 1o ) e. _V /\ B e. ( A |_| 1o ) /\ <. 1o , (/) >. e. ( A |_| 1o ) ) -> ( ( A |_| 1o ) \ { B } ) ~~ ( ( A |_| 1o ) \ { <. 1o , (/) >. } ) ) |
|
| 20 | 4 5 18 19 | syl3anc | |- ( ( A e. V /\ B e. ( A |_| 1o ) ) -> ( ( A |_| 1o ) \ { B } ) ~~ ( ( A |_| 1o ) \ { <. 1o , (/) >. } ) ) |
| 21 | 16 | difeq1i | |- ( ( A |_| 1o ) \ { <. 1o , (/) >. } ) = ( ( ( { (/) } X. A ) u. ( { 1o } X. 1o ) ) \ { <. 1o , (/) >. } ) |
| 22 | xp01disjl | |- ( ( { (/) } X. A ) i^i ( { 1o } X. 1o ) ) = (/) |
|
| 23 | disj3 | |- ( ( ( { (/) } X. A ) i^i ( { 1o } X. 1o ) ) = (/) <-> ( { (/) } X. A ) = ( ( { (/) } X. A ) \ ( { 1o } X. 1o ) ) ) |
|
| 24 | 22 23 | mpbi | |- ( { (/) } X. A ) = ( ( { (/) } X. A ) \ ( { 1o } X. 1o ) ) |
| 25 | difun2 | |- ( ( ( { (/) } X. A ) u. ( { 1o } X. 1o ) ) \ ( { 1o } X. 1o ) ) = ( ( { (/) } X. A ) \ ( { 1o } X. 1o ) ) |
|
| 26 | 10 | difeq2i | |- ( ( ( { (/) } X. A ) u. ( { 1o } X. 1o ) ) \ ( { 1o } X. 1o ) ) = ( ( ( { (/) } X. A ) u. ( { 1o } X. 1o ) ) \ { <. 1o , (/) >. } ) |
| 27 | 24 25 26 | 3eqtr2i | |- ( { (/) } X. A ) = ( ( ( { (/) } X. A ) u. ( { 1o } X. 1o ) ) \ { <. 1o , (/) >. } ) |
| 28 | 21 27 | eqtr4i | |- ( ( A |_| 1o ) \ { <. 1o , (/) >. } ) = ( { (/) } X. A ) |
| 29 | xpsnen2g | |- ( ( (/) e. _V /\ A e. V ) -> ( { (/) } X. A ) ~~ A ) |
|
| 30 | 8 1 29 | sylancr | |- ( ( A e. V /\ B e. ( A |_| 1o ) ) -> ( { (/) } X. A ) ~~ A ) |
| 31 | 28 30 | eqbrtrid | |- ( ( A e. V /\ B e. ( A |_| 1o ) ) -> ( ( A |_| 1o ) \ { <. 1o , (/) >. } ) ~~ A ) |
| 32 | entr | |- ( ( ( ( A |_| 1o ) \ { B } ) ~~ ( ( A |_| 1o ) \ { <. 1o , (/) >. } ) /\ ( ( A |_| 1o ) \ { <. 1o , (/) >. } ) ~~ A ) -> ( ( A |_| 1o ) \ { B } ) ~~ A ) |
|
| 33 | 20 31 32 | syl2anc | |- ( ( A e. V /\ B e. ( A |_| 1o ) ) -> ( ( A |_| 1o ) \ { B } ) ~~ A ) |