This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Binary relation form of the cartesian product operator. (Contributed by Scott Fenton, 11-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | brcart.1 | |- A e. _V |
|
| brcart.2 | |- B e. _V |
||
| brcart.3 | |- C e. _V |
||
| Assertion | brcart | |- ( <. A , B >. Cart C <-> C = ( A X. B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brcart.1 | |- A e. _V |
|
| 2 | brcart.2 | |- B e. _V |
|
| 3 | brcart.3 | |- C e. _V |
|
| 4 | opex | |- <. A , B >. e. _V |
|
| 5 | df-cart | |- Cart = ( ( ( _V X. _V ) X. _V ) \ ran ( ( _V (x) _E ) /_\ ( pprod ( _E , _E ) (x) _V ) ) ) |
|
| 6 | 1 2 | opelvv | |- <. A , B >. e. ( _V X. _V ) |
| 7 | brxp | |- ( <. A , B >. ( ( _V X. _V ) X. _V ) C <-> ( <. A , B >. e. ( _V X. _V ) /\ C e. _V ) ) |
|
| 8 | 6 3 7 | mpbir2an | |- <. A , B >. ( ( _V X. _V ) X. _V ) C |
| 9 | 3anass | |- ( ( x = <. y , z >. /\ y _E A /\ z _E B ) <-> ( x = <. y , z >. /\ ( y _E A /\ z _E B ) ) ) |
|
| 10 | 1 | epeli | |- ( y _E A <-> y e. A ) |
| 11 | 2 | epeli | |- ( z _E B <-> z e. B ) |
| 12 | 10 11 | anbi12i | |- ( ( y _E A /\ z _E B ) <-> ( y e. A /\ z e. B ) ) |
| 13 | 12 | anbi2i | |- ( ( x = <. y , z >. /\ ( y _E A /\ z _E B ) ) <-> ( x = <. y , z >. /\ ( y e. A /\ z e. B ) ) ) |
| 14 | 9 13 | bitri | |- ( ( x = <. y , z >. /\ y _E A /\ z _E B ) <-> ( x = <. y , z >. /\ ( y e. A /\ z e. B ) ) ) |
| 15 | 14 | 2exbii | |- ( E. y E. z ( x = <. y , z >. /\ y _E A /\ z _E B ) <-> E. y E. z ( x = <. y , z >. /\ ( y e. A /\ z e. B ) ) ) |
| 16 | vex | |- x e. _V |
|
| 17 | 16 1 2 | brpprod3b | |- ( x pprod ( _E , _E ) <. A , B >. <-> E. y E. z ( x = <. y , z >. /\ y _E A /\ z _E B ) ) |
| 18 | elxp | |- ( x e. ( A X. B ) <-> E. y E. z ( x = <. y , z >. /\ ( y e. A /\ z e. B ) ) ) |
|
| 19 | 15 17 18 | 3bitr4ri | |- ( x e. ( A X. B ) <-> x pprod ( _E , _E ) <. A , B >. ) |
| 20 | 4 3 5 8 19 | brtxpsd3 | |- ( <. A , B >. Cart C <-> C = ( A X. B ) ) |