This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition of restriction. (Contributed by Scott Fenton, 17-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfres3 | |- ( A |` B ) = ( A i^i ( B X. ran A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-res | |- ( A |` B ) = ( A i^i ( B X. _V ) ) |
|
| 2 | eleq1 | |- ( x = <. y , z >. -> ( x e. A <-> <. y , z >. e. A ) ) |
|
| 3 | vex | |- z e. _V |
|
| 4 | 3 | biantru | |- ( y e. B <-> ( y e. B /\ z e. _V ) ) |
| 5 | vex | |- y e. _V |
|
| 6 | 5 3 | opelrn | |- ( <. y , z >. e. A -> z e. ran A ) |
| 7 | 6 | biantrud | |- ( <. y , z >. e. A -> ( y e. B <-> ( y e. B /\ z e. ran A ) ) ) |
| 8 | 4 7 | bitr3id | |- ( <. y , z >. e. A -> ( ( y e. B /\ z e. _V ) <-> ( y e. B /\ z e. ran A ) ) ) |
| 9 | 2 8 | biimtrdi | |- ( x = <. y , z >. -> ( x e. A -> ( ( y e. B /\ z e. _V ) <-> ( y e. B /\ z e. ran A ) ) ) ) |
| 10 | 9 | com12 | |- ( x e. A -> ( x = <. y , z >. -> ( ( y e. B /\ z e. _V ) <-> ( y e. B /\ z e. ran A ) ) ) ) |
| 11 | 10 | pm5.32d | |- ( x e. A -> ( ( x = <. y , z >. /\ ( y e. B /\ z e. _V ) ) <-> ( x = <. y , z >. /\ ( y e. B /\ z e. ran A ) ) ) ) |
| 12 | 11 | 2exbidv | |- ( x e. A -> ( E. y E. z ( x = <. y , z >. /\ ( y e. B /\ z e. _V ) ) <-> E. y E. z ( x = <. y , z >. /\ ( y e. B /\ z e. ran A ) ) ) ) |
| 13 | elxp | |- ( x e. ( B X. _V ) <-> E. y E. z ( x = <. y , z >. /\ ( y e. B /\ z e. _V ) ) ) |
|
| 14 | elxp | |- ( x e. ( B X. ran A ) <-> E. y E. z ( x = <. y , z >. /\ ( y e. B /\ z e. ran A ) ) ) |
|
| 15 | 12 13 14 | 3bitr4g | |- ( x e. A -> ( x e. ( B X. _V ) <-> x e. ( B X. ran A ) ) ) |
| 16 | 15 | pm5.32i | |- ( ( x e. A /\ x e. ( B X. _V ) ) <-> ( x e. A /\ x e. ( B X. ran A ) ) ) |
| 17 | elin | |- ( x e. ( A i^i ( B X. ran A ) ) <-> ( x e. A /\ x e. ( B X. ran A ) ) ) |
|
| 18 | 16 17 | bitr4i | |- ( ( x e. A /\ x e. ( B X. _V ) ) <-> x e. ( A i^i ( B X. ran A ) ) ) |
| 19 | 18 | ineqri | |- ( A i^i ( B X. _V ) ) = ( A i^i ( B X. ran A ) ) |
| 20 | 1 19 | eqtri | |- ( A |` B ) = ( A i^i ( B X. ran A ) ) |