This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Binary relation form of the Cap function. (Contributed by Scott Fenton, 17-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | brcap.1 | |- A e. _V |
|
| brcap.2 | |- B e. _V |
||
| brcap.3 | |- C e. _V |
||
| Assertion | brcap | |- ( <. A , B >. Cap C <-> C = ( A i^i B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brcap.1 | |- A e. _V |
|
| 2 | brcap.2 | |- B e. _V |
|
| 3 | brcap.3 | |- C e. _V |
|
| 4 | opex | |- <. A , B >. e. _V |
|
| 5 | df-cap | |- Cap = ( ( ( _V X. _V ) X. _V ) \ ran ( ( _V (x) _E ) /_\ ( ( ( `' 1st o. _E ) i^i ( `' 2nd o. _E ) ) (x) _V ) ) ) |
|
| 6 | 1 2 | opelvv | |- <. A , B >. e. ( _V X. _V ) |
| 7 | brxp | |- ( <. A , B >. ( ( _V X. _V ) X. _V ) C <-> ( <. A , B >. e. ( _V X. _V ) /\ C e. _V ) ) |
|
| 8 | 6 3 7 | mpbir2an | |- <. A , B >. ( ( _V X. _V ) X. _V ) C |
| 9 | epel | |- ( x _E y <-> x e. y ) |
|
| 10 | vex | |- y e. _V |
|
| 11 | 10 4 | brcnv | |- ( y `' 1st <. A , B >. <-> <. A , B >. 1st y ) |
| 12 | 1 2 | br1steq | |- ( <. A , B >. 1st y <-> y = A ) |
| 13 | 11 12 | bitri | |- ( y `' 1st <. A , B >. <-> y = A ) |
| 14 | 9 13 | anbi12ci | |- ( ( x _E y /\ y `' 1st <. A , B >. ) <-> ( y = A /\ x e. y ) ) |
| 15 | 14 | exbii | |- ( E. y ( x _E y /\ y `' 1st <. A , B >. ) <-> E. y ( y = A /\ x e. y ) ) |
| 16 | vex | |- x e. _V |
|
| 17 | 16 4 | brco | |- ( x ( `' 1st o. _E ) <. A , B >. <-> E. y ( x _E y /\ y `' 1st <. A , B >. ) ) |
| 18 | 1 | clel3 | |- ( x e. A <-> E. y ( y = A /\ x e. y ) ) |
| 19 | 15 17 18 | 3bitr4i | |- ( x ( `' 1st o. _E ) <. A , B >. <-> x e. A ) |
| 20 | 10 4 | brcnv | |- ( y `' 2nd <. A , B >. <-> <. A , B >. 2nd y ) |
| 21 | 1 2 | br2ndeq | |- ( <. A , B >. 2nd y <-> y = B ) |
| 22 | 20 21 | bitri | |- ( y `' 2nd <. A , B >. <-> y = B ) |
| 23 | 9 22 | anbi12ci | |- ( ( x _E y /\ y `' 2nd <. A , B >. ) <-> ( y = B /\ x e. y ) ) |
| 24 | 23 | exbii | |- ( E. y ( x _E y /\ y `' 2nd <. A , B >. ) <-> E. y ( y = B /\ x e. y ) ) |
| 25 | 16 4 | brco | |- ( x ( `' 2nd o. _E ) <. A , B >. <-> E. y ( x _E y /\ y `' 2nd <. A , B >. ) ) |
| 26 | 2 | clel3 | |- ( x e. B <-> E. y ( y = B /\ x e. y ) ) |
| 27 | 24 25 26 | 3bitr4i | |- ( x ( `' 2nd o. _E ) <. A , B >. <-> x e. B ) |
| 28 | 19 27 | anbi12i | |- ( ( x ( `' 1st o. _E ) <. A , B >. /\ x ( `' 2nd o. _E ) <. A , B >. ) <-> ( x e. A /\ x e. B ) ) |
| 29 | brin | |- ( x ( ( `' 1st o. _E ) i^i ( `' 2nd o. _E ) ) <. A , B >. <-> ( x ( `' 1st o. _E ) <. A , B >. /\ x ( `' 2nd o. _E ) <. A , B >. ) ) |
|
| 30 | elin | |- ( x e. ( A i^i B ) <-> ( x e. A /\ x e. B ) ) |
|
| 31 | 28 29 30 | 3bitr4ri | |- ( x e. ( A i^i B ) <-> x ( ( `' 1st o. _E ) i^i ( `' 2nd o. _E ) ) <. A , B >. ) |
| 32 | 4 3 5 8 31 | brtxpsd3 | |- ( <. A , B >. Cap C <-> C = ( A i^i B ) ) |