This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The binary relation over a tail cross when the second argument is not an ordered pair. (Contributed by Scott Fenton, 14-Apr-2014) (Revised by Mario Carneiro, 3-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | brtxp2.1 | |- A e. _V |
|
| Assertion | brtxp2 | |- ( A ( R (x) S ) B <-> E. x E. y ( B = <. x , y >. /\ A R x /\ A S y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brtxp2.1 | |- A e. _V |
|
| 2 | txpss3v | |- ( R (x) S ) C_ ( _V X. ( _V X. _V ) ) |
|
| 3 | 2 | brel | |- ( A ( R (x) S ) B -> ( A e. _V /\ B e. ( _V X. _V ) ) ) |
| 4 | 3 | simprd | |- ( A ( R (x) S ) B -> B e. ( _V X. _V ) ) |
| 5 | elvv | |- ( B e. ( _V X. _V ) <-> E. x E. y B = <. x , y >. ) |
|
| 6 | 4 5 | sylib | |- ( A ( R (x) S ) B -> E. x E. y B = <. x , y >. ) |
| 7 | 6 | pm4.71ri | |- ( A ( R (x) S ) B <-> ( E. x E. y B = <. x , y >. /\ A ( R (x) S ) B ) ) |
| 8 | 19.41vv | |- ( E. x E. y ( B = <. x , y >. /\ A ( R (x) S ) B ) <-> ( E. x E. y B = <. x , y >. /\ A ( R (x) S ) B ) ) |
|
| 9 | 7 8 | bitr4i | |- ( A ( R (x) S ) B <-> E. x E. y ( B = <. x , y >. /\ A ( R (x) S ) B ) ) |
| 10 | breq2 | |- ( B = <. x , y >. -> ( A ( R (x) S ) B <-> A ( R (x) S ) <. x , y >. ) ) |
|
| 11 | 10 | pm5.32i | |- ( ( B = <. x , y >. /\ A ( R (x) S ) B ) <-> ( B = <. x , y >. /\ A ( R (x) S ) <. x , y >. ) ) |
| 12 | 11 | 2exbii | |- ( E. x E. y ( B = <. x , y >. /\ A ( R (x) S ) B ) <-> E. x E. y ( B = <. x , y >. /\ A ( R (x) S ) <. x , y >. ) ) |
| 13 | vex | |- x e. _V |
|
| 14 | vex | |- y e. _V |
|
| 15 | 1 13 14 | brtxp | |- ( A ( R (x) S ) <. x , y >. <-> ( A R x /\ A S y ) ) |
| 16 | 15 | anbi2i | |- ( ( B = <. x , y >. /\ A ( R (x) S ) <. x , y >. ) <-> ( B = <. x , y >. /\ ( A R x /\ A S y ) ) ) |
| 17 | 3anass | |- ( ( B = <. x , y >. /\ A R x /\ A S y ) <-> ( B = <. x , y >. /\ ( A R x /\ A S y ) ) ) |
|
| 18 | 16 17 | bitr4i | |- ( ( B = <. x , y >. /\ A ( R (x) S ) <. x , y >. ) <-> ( B = <. x , y >. /\ A R x /\ A S y ) ) |
| 19 | 18 | 2exbii | |- ( E. x E. y ( B = <. x , y >. /\ A ( R (x) S ) <. x , y >. ) <-> E. x E. y ( B = <. x , y >. /\ A R x /\ A S y ) ) |
| 20 | 9 12 19 | 3bitri | |- ( A ( R (x) S ) B <-> E. x E. y ( B = <. x , y >. /\ A R x /\ A S y ) ) |