This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for bezout . (Contributed by Mario Carneiro, 22-Feb-2014) ( Revised by AV, 30-Sep-2020.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | bezout.1 | |- M = { z e. NN | E. x e. ZZ E. y e. ZZ z = ( ( A x. x ) + ( B x. y ) ) } |
|
| bezout.3 | |- ( ph -> A e. ZZ ) |
||
| bezout.4 | |- ( ph -> B e. ZZ ) |
||
| bezout.2 | |- G = inf ( M , RR , < ) |
||
| bezout.5 | |- ( ph -> -. ( A = 0 /\ B = 0 ) ) |
||
| Assertion | bezoutlem3 | |- ( ph -> ( C e. M -> G || C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bezout.1 | |- M = { z e. NN | E. x e. ZZ E. y e. ZZ z = ( ( A x. x ) + ( B x. y ) ) } |
|
| 2 | bezout.3 | |- ( ph -> A e. ZZ ) |
|
| 3 | bezout.4 | |- ( ph -> B e. ZZ ) |
|
| 4 | bezout.2 | |- G = inf ( M , RR , < ) |
|
| 5 | bezout.5 | |- ( ph -> -. ( A = 0 /\ B = 0 ) ) |
|
| 6 | simpr | |- ( ( ph /\ C e. M ) -> C e. M ) |
|
| 7 | eqeq1 | |- ( z = C -> ( z = ( ( A x. x ) + ( B x. y ) ) <-> C = ( ( A x. x ) + ( B x. y ) ) ) ) |
|
| 8 | 7 | 2rexbidv | |- ( z = C -> ( E. x e. ZZ E. y e. ZZ z = ( ( A x. x ) + ( B x. y ) ) <-> E. x e. ZZ E. y e. ZZ C = ( ( A x. x ) + ( B x. y ) ) ) ) |
| 9 | oveq2 | |- ( x = s -> ( A x. x ) = ( A x. s ) ) |
|
| 10 | 9 | oveq1d | |- ( x = s -> ( ( A x. x ) + ( B x. y ) ) = ( ( A x. s ) + ( B x. y ) ) ) |
| 11 | 10 | eqeq2d | |- ( x = s -> ( C = ( ( A x. x ) + ( B x. y ) ) <-> C = ( ( A x. s ) + ( B x. y ) ) ) ) |
| 12 | oveq2 | |- ( y = t -> ( B x. y ) = ( B x. t ) ) |
|
| 13 | 12 | oveq2d | |- ( y = t -> ( ( A x. s ) + ( B x. y ) ) = ( ( A x. s ) + ( B x. t ) ) ) |
| 14 | 13 | eqeq2d | |- ( y = t -> ( C = ( ( A x. s ) + ( B x. y ) ) <-> C = ( ( A x. s ) + ( B x. t ) ) ) ) |
| 15 | 11 14 | cbvrex2vw | |- ( E. x e. ZZ E. y e. ZZ C = ( ( A x. x ) + ( B x. y ) ) <-> E. s e. ZZ E. t e. ZZ C = ( ( A x. s ) + ( B x. t ) ) ) |
| 16 | 8 15 | bitrdi | |- ( z = C -> ( E. x e. ZZ E. y e. ZZ z = ( ( A x. x ) + ( B x. y ) ) <-> E. s e. ZZ E. t e. ZZ C = ( ( A x. s ) + ( B x. t ) ) ) ) |
| 17 | 16 1 | elrab2 | |- ( C e. M <-> ( C e. NN /\ E. s e. ZZ E. t e. ZZ C = ( ( A x. s ) + ( B x. t ) ) ) ) |
| 18 | 6 17 | sylib | |- ( ( ph /\ C e. M ) -> ( C e. NN /\ E. s e. ZZ E. t e. ZZ C = ( ( A x. s ) + ( B x. t ) ) ) ) |
| 19 | 18 | simpld | |- ( ( ph /\ C e. M ) -> C e. NN ) |
| 20 | 19 | nnred | |- ( ( ph /\ C e. M ) -> C e. RR ) |
| 21 | 1 2 3 4 5 | bezoutlem2 | |- ( ph -> G e. M ) |
| 22 | oveq2 | |- ( x = u -> ( A x. x ) = ( A x. u ) ) |
|
| 23 | 22 | oveq1d | |- ( x = u -> ( ( A x. x ) + ( B x. y ) ) = ( ( A x. u ) + ( B x. y ) ) ) |
| 24 | 23 | eqeq2d | |- ( x = u -> ( z = ( ( A x. x ) + ( B x. y ) ) <-> z = ( ( A x. u ) + ( B x. y ) ) ) ) |
| 25 | oveq2 | |- ( y = v -> ( B x. y ) = ( B x. v ) ) |
|
| 26 | 25 | oveq2d | |- ( y = v -> ( ( A x. u ) + ( B x. y ) ) = ( ( A x. u ) + ( B x. v ) ) ) |
| 27 | 26 | eqeq2d | |- ( y = v -> ( z = ( ( A x. u ) + ( B x. y ) ) <-> z = ( ( A x. u ) + ( B x. v ) ) ) ) |
| 28 | 24 27 | cbvrex2vw | |- ( E. x e. ZZ E. y e. ZZ z = ( ( A x. x ) + ( B x. y ) ) <-> E. u e. ZZ E. v e. ZZ z = ( ( A x. u ) + ( B x. v ) ) ) |
| 29 | eqeq1 | |- ( z = G -> ( z = ( ( A x. u ) + ( B x. v ) ) <-> G = ( ( A x. u ) + ( B x. v ) ) ) ) |
|
| 30 | 29 | 2rexbidv | |- ( z = G -> ( E. u e. ZZ E. v e. ZZ z = ( ( A x. u ) + ( B x. v ) ) <-> E. u e. ZZ E. v e. ZZ G = ( ( A x. u ) + ( B x. v ) ) ) ) |
| 31 | 28 30 | bitrid | |- ( z = G -> ( E. x e. ZZ E. y e. ZZ z = ( ( A x. x ) + ( B x. y ) ) <-> E. u e. ZZ E. v e. ZZ G = ( ( A x. u ) + ( B x. v ) ) ) ) |
| 32 | 31 1 | elrab2 | |- ( G e. M <-> ( G e. NN /\ E. u e. ZZ E. v e. ZZ G = ( ( A x. u ) + ( B x. v ) ) ) ) |
| 33 | 21 32 | sylib | |- ( ph -> ( G e. NN /\ E. u e. ZZ E. v e. ZZ G = ( ( A x. u ) + ( B x. v ) ) ) ) |
| 34 | 33 | simpld | |- ( ph -> G e. NN ) |
| 35 | 34 | nnrpd | |- ( ph -> G e. RR+ ) |
| 36 | 35 | adantr | |- ( ( ph /\ C e. M ) -> G e. RR+ ) |
| 37 | modlt | |- ( ( C e. RR /\ G e. RR+ ) -> ( C mod G ) < G ) |
|
| 38 | 20 36 37 | syl2anc | |- ( ( ph /\ C e. M ) -> ( C mod G ) < G ) |
| 39 | 19 | nnzd | |- ( ( ph /\ C e. M ) -> C e. ZZ ) |
| 40 | 34 | adantr | |- ( ( ph /\ C e. M ) -> G e. NN ) |
| 41 | 39 40 | zmodcld | |- ( ( ph /\ C e. M ) -> ( C mod G ) e. NN0 ) |
| 42 | 41 | nn0red | |- ( ( ph /\ C e. M ) -> ( C mod G ) e. RR ) |
| 43 | 34 | nnred | |- ( ph -> G e. RR ) |
| 44 | 43 | adantr | |- ( ( ph /\ C e. M ) -> G e. RR ) |
| 45 | 42 44 | ltnled | |- ( ( ph /\ C e. M ) -> ( ( C mod G ) < G <-> -. G <_ ( C mod G ) ) ) |
| 46 | 38 45 | mpbid | |- ( ( ph /\ C e. M ) -> -. G <_ ( C mod G ) ) |
| 47 | 18 | simprd | |- ( ( ph /\ C e. M ) -> E. s e. ZZ E. t e. ZZ C = ( ( A x. s ) + ( B x. t ) ) ) |
| 48 | 33 | simprd | |- ( ph -> E. u e. ZZ E. v e. ZZ G = ( ( A x. u ) + ( B x. v ) ) ) |
| 49 | 48 | ad2antrr | |- ( ( ( ph /\ C e. M ) /\ ( s e. ZZ /\ t e. ZZ ) ) -> E. u e. ZZ E. v e. ZZ G = ( ( A x. u ) + ( B x. v ) ) ) |
| 50 | simprll | |- ( ( ( ph /\ C e. M ) /\ ( ( s e. ZZ /\ t e. ZZ ) /\ ( u e. ZZ /\ v e. ZZ ) ) ) -> s e. ZZ ) |
|
| 51 | simprrl | |- ( ( ( ph /\ C e. M ) /\ ( ( s e. ZZ /\ t e. ZZ ) /\ ( u e. ZZ /\ v e. ZZ ) ) ) -> u e. ZZ ) |
|
| 52 | 20 40 | nndivred | |- ( ( ph /\ C e. M ) -> ( C / G ) e. RR ) |
| 53 | 52 | flcld | |- ( ( ph /\ C e. M ) -> ( |_ ` ( C / G ) ) e. ZZ ) |
| 54 | 53 | adantr | |- ( ( ( ph /\ C e. M ) /\ ( ( s e. ZZ /\ t e. ZZ ) /\ ( u e. ZZ /\ v e. ZZ ) ) ) -> ( |_ ` ( C / G ) ) e. ZZ ) |
| 55 | 51 54 | zmulcld | |- ( ( ( ph /\ C e. M ) /\ ( ( s e. ZZ /\ t e. ZZ ) /\ ( u e. ZZ /\ v e. ZZ ) ) ) -> ( u x. ( |_ ` ( C / G ) ) ) e. ZZ ) |
| 56 | 50 55 | zsubcld | |- ( ( ( ph /\ C e. M ) /\ ( ( s e. ZZ /\ t e. ZZ ) /\ ( u e. ZZ /\ v e. ZZ ) ) ) -> ( s - ( u x. ( |_ ` ( C / G ) ) ) ) e. ZZ ) |
| 57 | simprlr | |- ( ( ( ph /\ C e. M ) /\ ( ( s e. ZZ /\ t e. ZZ ) /\ ( u e. ZZ /\ v e. ZZ ) ) ) -> t e. ZZ ) |
|
| 58 | simprrr | |- ( ( ( ph /\ C e. M ) /\ ( ( s e. ZZ /\ t e. ZZ ) /\ ( u e. ZZ /\ v e. ZZ ) ) ) -> v e. ZZ ) |
|
| 59 | 58 54 | zmulcld | |- ( ( ( ph /\ C e. M ) /\ ( ( s e. ZZ /\ t e. ZZ ) /\ ( u e. ZZ /\ v e. ZZ ) ) ) -> ( v x. ( |_ ` ( C / G ) ) ) e. ZZ ) |
| 60 | 57 59 | zsubcld | |- ( ( ( ph /\ C e. M ) /\ ( ( s e. ZZ /\ t e. ZZ ) /\ ( u e. ZZ /\ v e. ZZ ) ) ) -> ( t - ( v x. ( |_ ` ( C / G ) ) ) ) e. ZZ ) |
| 61 | 2 | zcnd | |- ( ph -> A e. CC ) |
| 62 | 61 | ad2antrr | |- ( ( ( ph /\ C e. M ) /\ ( ( s e. ZZ /\ t e. ZZ ) /\ ( u e. ZZ /\ v e. ZZ ) ) ) -> A e. CC ) |
| 63 | 50 | zcnd | |- ( ( ( ph /\ C e. M ) /\ ( ( s e. ZZ /\ t e. ZZ ) /\ ( u e. ZZ /\ v e. ZZ ) ) ) -> s e. CC ) |
| 64 | 62 63 | mulcld | |- ( ( ( ph /\ C e. M ) /\ ( ( s e. ZZ /\ t e. ZZ ) /\ ( u e. ZZ /\ v e. ZZ ) ) ) -> ( A x. s ) e. CC ) |
| 65 | 3 | zcnd | |- ( ph -> B e. CC ) |
| 66 | 65 | ad2antrr | |- ( ( ( ph /\ C e. M ) /\ ( ( s e. ZZ /\ t e. ZZ ) /\ ( u e. ZZ /\ v e. ZZ ) ) ) -> B e. CC ) |
| 67 | 57 | zcnd | |- ( ( ( ph /\ C e. M ) /\ ( ( s e. ZZ /\ t e. ZZ ) /\ ( u e. ZZ /\ v e. ZZ ) ) ) -> t e. CC ) |
| 68 | 66 67 | mulcld | |- ( ( ( ph /\ C e. M ) /\ ( ( s e. ZZ /\ t e. ZZ ) /\ ( u e. ZZ /\ v e. ZZ ) ) ) -> ( B x. t ) e. CC ) |
| 69 | 55 | zcnd | |- ( ( ( ph /\ C e. M ) /\ ( ( s e. ZZ /\ t e. ZZ ) /\ ( u e. ZZ /\ v e. ZZ ) ) ) -> ( u x. ( |_ ` ( C / G ) ) ) e. CC ) |
| 70 | 62 69 | mulcld | |- ( ( ( ph /\ C e. M ) /\ ( ( s e. ZZ /\ t e. ZZ ) /\ ( u e. ZZ /\ v e. ZZ ) ) ) -> ( A x. ( u x. ( |_ ` ( C / G ) ) ) ) e. CC ) |
| 71 | 59 | zcnd | |- ( ( ( ph /\ C e. M ) /\ ( ( s e. ZZ /\ t e. ZZ ) /\ ( u e. ZZ /\ v e. ZZ ) ) ) -> ( v x. ( |_ ` ( C / G ) ) ) e. CC ) |
| 72 | 66 71 | mulcld | |- ( ( ( ph /\ C e. M ) /\ ( ( s e. ZZ /\ t e. ZZ ) /\ ( u e. ZZ /\ v e. ZZ ) ) ) -> ( B x. ( v x. ( |_ ` ( C / G ) ) ) ) e. CC ) |
| 73 | 64 68 70 72 | addsub4d | |- ( ( ( ph /\ C e. M ) /\ ( ( s e. ZZ /\ t e. ZZ ) /\ ( u e. ZZ /\ v e. ZZ ) ) ) -> ( ( ( A x. s ) + ( B x. t ) ) - ( ( A x. ( u x. ( |_ ` ( C / G ) ) ) ) + ( B x. ( v x. ( |_ ` ( C / G ) ) ) ) ) ) = ( ( ( A x. s ) - ( A x. ( u x. ( |_ ` ( C / G ) ) ) ) ) + ( ( B x. t ) - ( B x. ( v x. ( |_ ` ( C / G ) ) ) ) ) ) ) |
| 74 | 51 | zcnd | |- ( ( ( ph /\ C e. M ) /\ ( ( s e. ZZ /\ t e. ZZ ) /\ ( u e. ZZ /\ v e. ZZ ) ) ) -> u e. CC ) |
| 75 | 62 74 | mulcld | |- ( ( ( ph /\ C e. M ) /\ ( ( s e. ZZ /\ t e. ZZ ) /\ ( u e. ZZ /\ v e. ZZ ) ) ) -> ( A x. u ) e. CC ) |
| 76 | 53 | zcnd | |- ( ( ph /\ C e. M ) -> ( |_ ` ( C / G ) ) e. CC ) |
| 77 | 76 | adantr | |- ( ( ( ph /\ C e. M ) /\ ( ( s e. ZZ /\ t e. ZZ ) /\ ( u e. ZZ /\ v e. ZZ ) ) ) -> ( |_ ` ( C / G ) ) e. CC ) |
| 78 | 58 | zcnd | |- ( ( ( ph /\ C e. M ) /\ ( ( s e. ZZ /\ t e. ZZ ) /\ ( u e. ZZ /\ v e. ZZ ) ) ) -> v e. CC ) |
| 79 | 66 78 | mulcld | |- ( ( ( ph /\ C e. M ) /\ ( ( s e. ZZ /\ t e. ZZ ) /\ ( u e. ZZ /\ v e. ZZ ) ) ) -> ( B x. v ) e. CC ) |
| 80 | 62 74 77 | mulassd | |- ( ( ( ph /\ C e. M ) /\ ( ( s e. ZZ /\ t e. ZZ ) /\ ( u e. ZZ /\ v e. ZZ ) ) ) -> ( ( A x. u ) x. ( |_ ` ( C / G ) ) ) = ( A x. ( u x. ( |_ ` ( C / G ) ) ) ) ) |
| 81 | 66 78 77 | mulassd | |- ( ( ( ph /\ C e. M ) /\ ( ( s e. ZZ /\ t e. ZZ ) /\ ( u e. ZZ /\ v e. ZZ ) ) ) -> ( ( B x. v ) x. ( |_ ` ( C / G ) ) ) = ( B x. ( v x. ( |_ ` ( C / G ) ) ) ) ) |
| 82 | 80 81 | oveq12d | |- ( ( ( ph /\ C e. M ) /\ ( ( s e. ZZ /\ t e. ZZ ) /\ ( u e. ZZ /\ v e. ZZ ) ) ) -> ( ( ( A x. u ) x. ( |_ ` ( C / G ) ) ) + ( ( B x. v ) x. ( |_ ` ( C / G ) ) ) ) = ( ( A x. ( u x. ( |_ ` ( C / G ) ) ) ) + ( B x. ( v x. ( |_ ` ( C / G ) ) ) ) ) ) |
| 83 | 75 77 79 82 | joinlmuladdmuld | |- ( ( ( ph /\ C e. M ) /\ ( ( s e. ZZ /\ t e. ZZ ) /\ ( u e. ZZ /\ v e. ZZ ) ) ) -> ( ( ( A x. u ) + ( B x. v ) ) x. ( |_ ` ( C / G ) ) ) = ( ( A x. ( u x. ( |_ ` ( C / G ) ) ) ) + ( B x. ( v x. ( |_ ` ( C / G ) ) ) ) ) ) |
| 84 | 83 | oveq2d | |- ( ( ( ph /\ C e. M ) /\ ( ( s e. ZZ /\ t e. ZZ ) /\ ( u e. ZZ /\ v e. ZZ ) ) ) -> ( ( ( A x. s ) + ( B x. t ) ) - ( ( ( A x. u ) + ( B x. v ) ) x. ( |_ ` ( C / G ) ) ) ) = ( ( ( A x. s ) + ( B x. t ) ) - ( ( A x. ( u x. ( |_ ` ( C / G ) ) ) ) + ( B x. ( v x. ( |_ ` ( C / G ) ) ) ) ) ) ) |
| 85 | 62 63 69 | subdid | |- ( ( ( ph /\ C e. M ) /\ ( ( s e. ZZ /\ t e. ZZ ) /\ ( u e. ZZ /\ v e. ZZ ) ) ) -> ( A x. ( s - ( u x. ( |_ ` ( C / G ) ) ) ) ) = ( ( A x. s ) - ( A x. ( u x. ( |_ ` ( C / G ) ) ) ) ) ) |
| 86 | 66 67 71 | subdid | |- ( ( ( ph /\ C e. M ) /\ ( ( s e. ZZ /\ t e. ZZ ) /\ ( u e. ZZ /\ v e. ZZ ) ) ) -> ( B x. ( t - ( v x. ( |_ ` ( C / G ) ) ) ) ) = ( ( B x. t ) - ( B x. ( v x. ( |_ ` ( C / G ) ) ) ) ) ) |
| 87 | 85 86 | oveq12d | |- ( ( ( ph /\ C e. M ) /\ ( ( s e. ZZ /\ t e. ZZ ) /\ ( u e. ZZ /\ v e. ZZ ) ) ) -> ( ( A x. ( s - ( u x. ( |_ ` ( C / G ) ) ) ) ) + ( B x. ( t - ( v x. ( |_ ` ( C / G ) ) ) ) ) ) = ( ( ( A x. s ) - ( A x. ( u x. ( |_ ` ( C / G ) ) ) ) ) + ( ( B x. t ) - ( B x. ( v x. ( |_ ` ( C / G ) ) ) ) ) ) ) |
| 88 | 73 84 87 | 3eqtr4d | |- ( ( ( ph /\ C e. M ) /\ ( ( s e. ZZ /\ t e. ZZ ) /\ ( u e. ZZ /\ v e. ZZ ) ) ) -> ( ( ( A x. s ) + ( B x. t ) ) - ( ( ( A x. u ) + ( B x. v ) ) x. ( |_ ` ( C / G ) ) ) ) = ( ( A x. ( s - ( u x. ( |_ ` ( C / G ) ) ) ) ) + ( B x. ( t - ( v x. ( |_ ` ( C / G ) ) ) ) ) ) ) |
| 89 | oveq2 | |- ( x = ( s - ( u x. ( |_ ` ( C / G ) ) ) ) -> ( A x. x ) = ( A x. ( s - ( u x. ( |_ ` ( C / G ) ) ) ) ) ) |
|
| 90 | 89 | oveq1d | |- ( x = ( s - ( u x. ( |_ ` ( C / G ) ) ) ) -> ( ( A x. x ) + ( B x. y ) ) = ( ( A x. ( s - ( u x. ( |_ ` ( C / G ) ) ) ) ) + ( B x. y ) ) ) |
| 91 | 90 | eqeq2d | |- ( x = ( s - ( u x. ( |_ ` ( C / G ) ) ) ) -> ( ( ( ( A x. s ) + ( B x. t ) ) - ( ( ( A x. u ) + ( B x. v ) ) x. ( |_ ` ( C / G ) ) ) ) = ( ( A x. x ) + ( B x. y ) ) <-> ( ( ( A x. s ) + ( B x. t ) ) - ( ( ( A x. u ) + ( B x. v ) ) x. ( |_ ` ( C / G ) ) ) ) = ( ( A x. ( s - ( u x. ( |_ ` ( C / G ) ) ) ) ) + ( B x. y ) ) ) ) |
| 92 | oveq2 | |- ( y = ( t - ( v x. ( |_ ` ( C / G ) ) ) ) -> ( B x. y ) = ( B x. ( t - ( v x. ( |_ ` ( C / G ) ) ) ) ) ) |
|
| 93 | 92 | oveq2d | |- ( y = ( t - ( v x. ( |_ ` ( C / G ) ) ) ) -> ( ( A x. ( s - ( u x. ( |_ ` ( C / G ) ) ) ) ) + ( B x. y ) ) = ( ( A x. ( s - ( u x. ( |_ ` ( C / G ) ) ) ) ) + ( B x. ( t - ( v x. ( |_ ` ( C / G ) ) ) ) ) ) ) |
| 94 | 93 | eqeq2d | |- ( y = ( t - ( v x. ( |_ ` ( C / G ) ) ) ) -> ( ( ( ( A x. s ) + ( B x. t ) ) - ( ( ( A x. u ) + ( B x. v ) ) x. ( |_ ` ( C / G ) ) ) ) = ( ( A x. ( s - ( u x. ( |_ ` ( C / G ) ) ) ) ) + ( B x. y ) ) <-> ( ( ( A x. s ) + ( B x. t ) ) - ( ( ( A x. u ) + ( B x. v ) ) x. ( |_ ` ( C / G ) ) ) ) = ( ( A x. ( s - ( u x. ( |_ ` ( C / G ) ) ) ) ) + ( B x. ( t - ( v x. ( |_ ` ( C / G ) ) ) ) ) ) ) ) |
| 95 | 91 94 | rspc2ev | |- ( ( ( s - ( u x. ( |_ ` ( C / G ) ) ) ) e. ZZ /\ ( t - ( v x. ( |_ ` ( C / G ) ) ) ) e. ZZ /\ ( ( ( A x. s ) + ( B x. t ) ) - ( ( ( A x. u ) + ( B x. v ) ) x. ( |_ ` ( C / G ) ) ) ) = ( ( A x. ( s - ( u x. ( |_ ` ( C / G ) ) ) ) ) + ( B x. ( t - ( v x. ( |_ ` ( C / G ) ) ) ) ) ) ) -> E. x e. ZZ E. y e. ZZ ( ( ( A x. s ) + ( B x. t ) ) - ( ( ( A x. u ) + ( B x. v ) ) x. ( |_ ` ( C / G ) ) ) ) = ( ( A x. x ) + ( B x. y ) ) ) |
| 96 | 56 60 88 95 | syl3anc | |- ( ( ( ph /\ C e. M ) /\ ( ( s e. ZZ /\ t e. ZZ ) /\ ( u e. ZZ /\ v e. ZZ ) ) ) -> E. x e. ZZ E. y e. ZZ ( ( ( A x. s ) + ( B x. t ) ) - ( ( ( A x. u ) + ( B x. v ) ) x. ( |_ ` ( C / G ) ) ) ) = ( ( A x. x ) + ( B x. y ) ) ) |
| 97 | oveq1 | |- ( G = ( ( A x. u ) + ( B x. v ) ) -> ( G x. ( |_ ` ( C / G ) ) ) = ( ( ( A x. u ) + ( B x. v ) ) x. ( |_ ` ( C / G ) ) ) ) |
|
| 98 | oveq12 | |- ( ( C = ( ( A x. s ) + ( B x. t ) ) /\ ( G x. ( |_ ` ( C / G ) ) ) = ( ( ( A x. u ) + ( B x. v ) ) x. ( |_ ` ( C / G ) ) ) ) -> ( C - ( G x. ( |_ ` ( C / G ) ) ) ) = ( ( ( A x. s ) + ( B x. t ) ) - ( ( ( A x. u ) + ( B x. v ) ) x. ( |_ ` ( C / G ) ) ) ) ) |
|
| 99 | 97 98 | sylan2 | |- ( ( C = ( ( A x. s ) + ( B x. t ) ) /\ G = ( ( A x. u ) + ( B x. v ) ) ) -> ( C - ( G x. ( |_ ` ( C / G ) ) ) ) = ( ( ( A x. s ) + ( B x. t ) ) - ( ( ( A x. u ) + ( B x. v ) ) x. ( |_ ` ( C / G ) ) ) ) ) |
| 100 | 99 | eqeq1d | |- ( ( C = ( ( A x. s ) + ( B x. t ) ) /\ G = ( ( A x. u ) + ( B x. v ) ) ) -> ( ( C - ( G x. ( |_ ` ( C / G ) ) ) ) = ( ( A x. x ) + ( B x. y ) ) <-> ( ( ( A x. s ) + ( B x. t ) ) - ( ( ( A x. u ) + ( B x. v ) ) x. ( |_ ` ( C / G ) ) ) ) = ( ( A x. x ) + ( B x. y ) ) ) ) |
| 101 | 100 | 2rexbidv | |- ( ( C = ( ( A x. s ) + ( B x. t ) ) /\ G = ( ( A x. u ) + ( B x. v ) ) ) -> ( E. x e. ZZ E. y e. ZZ ( C - ( G x. ( |_ ` ( C / G ) ) ) ) = ( ( A x. x ) + ( B x. y ) ) <-> E. x e. ZZ E. y e. ZZ ( ( ( A x. s ) + ( B x. t ) ) - ( ( ( A x. u ) + ( B x. v ) ) x. ( |_ ` ( C / G ) ) ) ) = ( ( A x. x ) + ( B x. y ) ) ) ) |
| 102 | 96 101 | syl5ibrcom | |- ( ( ( ph /\ C e. M ) /\ ( ( s e. ZZ /\ t e. ZZ ) /\ ( u e. ZZ /\ v e. ZZ ) ) ) -> ( ( C = ( ( A x. s ) + ( B x. t ) ) /\ G = ( ( A x. u ) + ( B x. v ) ) ) -> E. x e. ZZ E. y e. ZZ ( C - ( G x. ( |_ ` ( C / G ) ) ) ) = ( ( A x. x ) + ( B x. y ) ) ) ) |
| 103 | 102 | expcomd | |- ( ( ( ph /\ C e. M ) /\ ( ( s e. ZZ /\ t e. ZZ ) /\ ( u e. ZZ /\ v e. ZZ ) ) ) -> ( G = ( ( A x. u ) + ( B x. v ) ) -> ( C = ( ( A x. s ) + ( B x. t ) ) -> E. x e. ZZ E. y e. ZZ ( C - ( G x. ( |_ ` ( C / G ) ) ) ) = ( ( A x. x ) + ( B x. y ) ) ) ) ) |
| 104 | 103 | expr | |- ( ( ( ph /\ C e. M ) /\ ( s e. ZZ /\ t e. ZZ ) ) -> ( ( u e. ZZ /\ v e. ZZ ) -> ( G = ( ( A x. u ) + ( B x. v ) ) -> ( C = ( ( A x. s ) + ( B x. t ) ) -> E. x e. ZZ E. y e. ZZ ( C - ( G x. ( |_ ` ( C / G ) ) ) ) = ( ( A x. x ) + ( B x. y ) ) ) ) ) ) |
| 105 | 104 | rexlimdvv | |- ( ( ( ph /\ C e. M ) /\ ( s e. ZZ /\ t e. ZZ ) ) -> ( E. u e. ZZ E. v e. ZZ G = ( ( A x. u ) + ( B x. v ) ) -> ( C = ( ( A x. s ) + ( B x. t ) ) -> E. x e. ZZ E. y e. ZZ ( C - ( G x. ( |_ ` ( C / G ) ) ) ) = ( ( A x. x ) + ( B x. y ) ) ) ) ) |
| 106 | 49 105 | mpd | |- ( ( ( ph /\ C e. M ) /\ ( s e. ZZ /\ t e. ZZ ) ) -> ( C = ( ( A x. s ) + ( B x. t ) ) -> E. x e. ZZ E. y e. ZZ ( C - ( G x. ( |_ ` ( C / G ) ) ) ) = ( ( A x. x ) + ( B x. y ) ) ) ) |
| 107 | 106 | ex | |- ( ( ph /\ C e. M ) -> ( ( s e. ZZ /\ t e. ZZ ) -> ( C = ( ( A x. s ) + ( B x. t ) ) -> E. x e. ZZ E. y e. ZZ ( C - ( G x. ( |_ ` ( C / G ) ) ) ) = ( ( A x. x ) + ( B x. y ) ) ) ) ) |
| 108 | 107 | rexlimdvv | |- ( ( ph /\ C e. M ) -> ( E. s e. ZZ E. t e. ZZ C = ( ( A x. s ) + ( B x. t ) ) -> E. x e. ZZ E. y e. ZZ ( C - ( G x. ( |_ ` ( C / G ) ) ) ) = ( ( A x. x ) + ( B x. y ) ) ) ) |
| 109 | 47 108 | mpd | |- ( ( ph /\ C e. M ) -> E. x e. ZZ E. y e. ZZ ( C - ( G x. ( |_ ` ( C / G ) ) ) ) = ( ( A x. x ) + ( B x. y ) ) ) |
| 110 | modval | |- ( ( C e. RR /\ G e. RR+ ) -> ( C mod G ) = ( C - ( G x. ( |_ ` ( C / G ) ) ) ) ) |
|
| 111 | 20 36 110 | syl2anc | |- ( ( ph /\ C e. M ) -> ( C mod G ) = ( C - ( G x. ( |_ ` ( C / G ) ) ) ) ) |
| 112 | 111 | eqcomd | |- ( ( ph /\ C e. M ) -> ( C - ( G x. ( |_ ` ( C / G ) ) ) ) = ( C mod G ) ) |
| 113 | 112 | eqeq1d | |- ( ( ph /\ C e. M ) -> ( ( C - ( G x. ( |_ ` ( C / G ) ) ) ) = ( ( A x. x ) + ( B x. y ) ) <-> ( C mod G ) = ( ( A x. x ) + ( B x. y ) ) ) ) |
| 114 | 113 | 2rexbidv | |- ( ( ph /\ C e. M ) -> ( E. x e. ZZ E. y e. ZZ ( C - ( G x. ( |_ ` ( C / G ) ) ) ) = ( ( A x. x ) + ( B x. y ) ) <-> E. x e. ZZ E. y e. ZZ ( C mod G ) = ( ( A x. x ) + ( B x. y ) ) ) ) |
| 115 | 109 114 | mpbid | |- ( ( ph /\ C e. M ) -> E. x e. ZZ E. y e. ZZ ( C mod G ) = ( ( A x. x ) + ( B x. y ) ) ) |
| 116 | eqeq1 | |- ( z = ( C mod G ) -> ( z = ( ( A x. x ) + ( B x. y ) ) <-> ( C mod G ) = ( ( A x. x ) + ( B x. y ) ) ) ) |
|
| 117 | 116 | 2rexbidv | |- ( z = ( C mod G ) -> ( E. x e. ZZ E. y e. ZZ z = ( ( A x. x ) + ( B x. y ) ) <-> E. x e. ZZ E. y e. ZZ ( C mod G ) = ( ( A x. x ) + ( B x. y ) ) ) ) |
| 118 | 117 1 | elrab2 | |- ( ( C mod G ) e. M <-> ( ( C mod G ) e. NN /\ E. x e. ZZ E. y e. ZZ ( C mod G ) = ( ( A x. x ) + ( B x. y ) ) ) ) |
| 119 | 118 | simplbi2com | |- ( E. x e. ZZ E. y e. ZZ ( C mod G ) = ( ( A x. x ) + ( B x. y ) ) -> ( ( C mod G ) e. NN -> ( C mod G ) e. M ) ) |
| 120 | 115 119 | syl | |- ( ( ph /\ C e. M ) -> ( ( C mod G ) e. NN -> ( C mod G ) e. M ) ) |
| 121 | 1 | ssrab3 | |- M C_ NN |
| 122 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
| 123 | 121 122 | sseqtri | |- M C_ ( ZZ>= ` 1 ) |
| 124 | infssuzle | |- ( ( M C_ ( ZZ>= ` 1 ) /\ ( C mod G ) e. M ) -> inf ( M , RR , < ) <_ ( C mod G ) ) |
|
| 125 | 123 124 | mpan | |- ( ( C mod G ) e. M -> inf ( M , RR , < ) <_ ( C mod G ) ) |
| 126 | 4 125 | eqbrtrid | |- ( ( C mod G ) e. M -> G <_ ( C mod G ) ) |
| 127 | 120 126 | syl6 | |- ( ( ph /\ C e. M ) -> ( ( C mod G ) e. NN -> G <_ ( C mod G ) ) ) |
| 128 | 46 127 | mtod | |- ( ( ph /\ C e. M ) -> -. ( C mod G ) e. NN ) |
| 129 | elnn0 | |- ( ( C mod G ) e. NN0 <-> ( ( C mod G ) e. NN \/ ( C mod G ) = 0 ) ) |
|
| 130 | 41 129 | sylib | |- ( ( ph /\ C e. M ) -> ( ( C mod G ) e. NN \/ ( C mod G ) = 0 ) ) |
| 131 | 130 | ord | |- ( ( ph /\ C e. M ) -> ( -. ( C mod G ) e. NN -> ( C mod G ) = 0 ) ) |
| 132 | 128 131 | mpd | |- ( ( ph /\ C e. M ) -> ( C mod G ) = 0 ) |
| 133 | dvdsval3 | |- ( ( G e. NN /\ C e. ZZ ) -> ( G || C <-> ( C mod G ) = 0 ) ) |
|
| 134 | 40 39 133 | syl2anc | |- ( ( ph /\ C e. M ) -> ( G || C <-> ( C mod G ) = 0 ) ) |
| 135 | 132 134 | mpbird | |- ( ( ph /\ C e. M ) -> G || C ) |
| 136 | 135 | ex | |- ( ph -> ( C e. M -> G || C ) ) |