This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for bezout . (Contributed by Mario Carneiro, 15-Mar-2014) ( Revised by AV, 30-Sep-2020.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | bezout.1 | |- M = { z e. NN | E. x e. ZZ E. y e. ZZ z = ( ( A x. x ) + ( B x. y ) ) } |
|
| bezout.3 | |- ( ph -> A e. ZZ ) |
||
| bezout.4 | |- ( ph -> B e. ZZ ) |
||
| bezout.2 | |- G = inf ( M , RR , < ) |
||
| bezout.5 | |- ( ph -> -. ( A = 0 /\ B = 0 ) ) |
||
| Assertion | bezoutlem2 | |- ( ph -> G e. M ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bezout.1 | |- M = { z e. NN | E. x e. ZZ E. y e. ZZ z = ( ( A x. x ) + ( B x. y ) ) } |
|
| 2 | bezout.3 | |- ( ph -> A e. ZZ ) |
|
| 3 | bezout.4 | |- ( ph -> B e. ZZ ) |
|
| 4 | bezout.2 | |- G = inf ( M , RR , < ) |
|
| 5 | bezout.5 | |- ( ph -> -. ( A = 0 /\ B = 0 ) ) |
|
| 6 | 1 | ssrab3 | |- M C_ NN |
| 7 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
| 8 | 6 7 | sseqtri | |- M C_ ( ZZ>= ` 1 ) |
| 9 | 1 2 3 | bezoutlem1 | |- ( ph -> ( A =/= 0 -> ( abs ` A ) e. M ) ) |
| 10 | ne0i | |- ( ( abs ` A ) e. M -> M =/= (/) ) |
|
| 11 | 9 10 | syl6 | |- ( ph -> ( A =/= 0 -> M =/= (/) ) ) |
| 12 | eqid | |- { z e. NN | E. y e. ZZ E. x e. ZZ z = ( ( B x. y ) + ( A x. x ) ) } = { z e. NN | E. y e. ZZ E. x e. ZZ z = ( ( B x. y ) + ( A x. x ) ) } |
|
| 13 | 12 3 2 | bezoutlem1 | |- ( ph -> ( B =/= 0 -> ( abs ` B ) e. { z e. NN | E. y e. ZZ E. x e. ZZ z = ( ( B x. y ) + ( A x. x ) ) } ) ) |
| 14 | rexcom | |- ( E. x e. ZZ E. y e. ZZ z = ( ( A x. x ) + ( B x. y ) ) <-> E. y e. ZZ E. x e. ZZ z = ( ( A x. x ) + ( B x. y ) ) ) |
|
| 15 | 2 | zcnd | |- ( ph -> A e. CC ) |
| 16 | 15 | adantr | |- ( ( ph /\ ( y e. ZZ /\ x e. ZZ ) ) -> A e. CC ) |
| 17 | zcn | |- ( x e. ZZ -> x e. CC ) |
|
| 18 | 17 | ad2antll | |- ( ( ph /\ ( y e. ZZ /\ x e. ZZ ) ) -> x e. CC ) |
| 19 | 16 18 | mulcld | |- ( ( ph /\ ( y e. ZZ /\ x e. ZZ ) ) -> ( A x. x ) e. CC ) |
| 20 | 3 | zcnd | |- ( ph -> B e. CC ) |
| 21 | 20 | adantr | |- ( ( ph /\ ( y e. ZZ /\ x e. ZZ ) ) -> B e. CC ) |
| 22 | zcn | |- ( y e. ZZ -> y e. CC ) |
|
| 23 | 22 | ad2antrl | |- ( ( ph /\ ( y e. ZZ /\ x e. ZZ ) ) -> y e. CC ) |
| 24 | 21 23 | mulcld | |- ( ( ph /\ ( y e. ZZ /\ x e. ZZ ) ) -> ( B x. y ) e. CC ) |
| 25 | 19 24 | addcomd | |- ( ( ph /\ ( y e. ZZ /\ x e. ZZ ) ) -> ( ( A x. x ) + ( B x. y ) ) = ( ( B x. y ) + ( A x. x ) ) ) |
| 26 | 25 | eqeq2d | |- ( ( ph /\ ( y e. ZZ /\ x e. ZZ ) ) -> ( z = ( ( A x. x ) + ( B x. y ) ) <-> z = ( ( B x. y ) + ( A x. x ) ) ) ) |
| 27 | 26 | 2rexbidva | |- ( ph -> ( E. y e. ZZ E. x e. ZZ z = ( ( A x. x ) + ( B x. y ) ) <-> E. y e. ZZ E. x e. ZZ z = ( ( B x. y ) + ( A x. x ) ) ) ) |
| 28 | 14 27 | bitrid | |- ( ph -> ( E. x e. ZZ E. y e. ZZ z = ( ( A x. x ) + ( B x. y ) ) <-> E. y e. ZZ E. x e. ZZ z = ( ( B x. y ) + ( A x. x ) ) ) ) |
| 29 | 28 | rabbidv | |- ( ph -> { z e. NN | E. x e. ZZ E. y e. ZZ z = ( ( A x. x ) + ( B x. y ) ) } = { z e. NN | E. y e. ZZ E. x e. ZZ z = ( ( B x. y ) + ( A x. x ) ) } ) |
| 30 | 1 29 | eqtrid | |- ( ph -> M = { z e. NN | E. y e. ZZ E. x e. ZZ z = ( ( B x. y ) + ( A x. x ) ) } ) |
| 31 | 30 | eleq2d | |- ( ph -> ( ( abs ` B ) e. M <-> ( abs ` B ) e. { z e. NN | E. y e. ZZ E. x e. ZZ z = ( ( B x. y ) + ( A x. x ) ) } ) ) |
| 32 | 13 31 | sylibrd | |- ( ph -> ( B =/= 0 -> ( abs ` B ) e. M ) ) |
| 33 | ne0i | |- ( ( abs ` B ) e. M -> M =/= (/) ) |
|
| 34 | 32 33 | syl6 | |- ( ph -> ( B =/= 0 -> M =/= (/) ) ) |
| 35 | neorian | |- ( ( A =/= 0 \/ B =/= 0 ) <-> -. ( A = 0 /\ B = 0 ) ) |
|
| 36 | 5 35 | sylibr | |- ( ph -> ( A =/= 0 \/ B =/= 0 ) ) |
| 37 | 11 34 36 | mpjaod | |- ( ph -> M =/= (/) ) |
| 38 | infssuzcl | |- ( ( M C_ ( ZZ>= ` 1 ) /\ M =/= (/) ) -> inf ( M , RR , < ) e. M ) |
|
| 39 | 8 37 38 | sylancr | |- ( ph -> inf ( M , RR , < ) e. M ) |
| 40 | 4 39 | eqeltrid | |- ( ph -> G e. M ) |