This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subtraction from both sides of 'less than or equal to'. (Contributed by NM, 13-May-2004) (Proof shortened by Mario Carneiro, 27-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lesub1 | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( A <_ B <-> ( A - C ) <_ ( B - C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> A e. RR ) |
|
| 2 | simp3 | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> C e. RR ) |
|
| 3 | simp2 | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> B e. RR ) |
|
| 4 | 3 2 | resubcld | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( B - C ) e. RR ) |
| 5 | lesubadd | |- ( ( A e. RR /\ C e. RR /\ ( B - C ) e. RR ) -> ( ( A - C ) <_ ( B - C ) <-> A <_ ( ( B - C ) + C ) ) ) |
|
| 6 | 1 2 4 5 | syl3anc | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( A - C ) <_ ( B - C ) <-> A <_ ( ( B - C ) + C ) ) ) |
| 7 | 3 | recnd | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> B e. CC ) |
| 8 | 2 | recnd | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> C e. CC ) |
| 9 | 7 8 | npcand | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( B - C ) + C ) = B ) |
| 10 | 9 | breq2d | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( A <_ ( ( B - C ) + C ) <-> A <_ B ) ) |
| 11 | 6 10 | bitr2d | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( A <_ B <-> ( A - C ) <_ ( B - C ) ) ) |