This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A version of axdc4 that works on an upper set of integers instead of _om . (Contributed by Mario Carneiro, 8-Jan-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | axdc4uz.1 | |- M e. ZZ |
|
| axdc4uz.2 | |- Z = ( ZZ>= ` M ) |
||
| Assertion | axdc4uz | |- ( ( A e. V /\ C e. A /\ F : ( Z X. A ) --> ( ~P A \ { (/) } ) ) -> E. g ( g : Z --> A /\ ( g ` M ) = C /\ A. k e. Z ( g ` ( k + 1 ) ) e. ( k F ( g ` k ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axdc4uz.1 | |- M e. ZZ |
|
| 2 | axdc4uz.2 | |- Z = ( ZZ>= ` M ) |
|
| 3 | eleq2 | |- ( f = A -> ( C e. f <-> C e. A ) ) |
|
| 4 | xpeq2 | |- ( f = A -> ( Z X. f ) = ( Z X. A ) ) |
|
| 5 | pweq | |- ( f = A -> ~P f = ~P A ) |
|
| 6 | 5 | difeq1d | |- ( f = A -> ( ~P f \ { (/) } ) = ( ~P A \ { (/) } ) ) |
| 7 | 4 6 | feq23d | |- ( f = A -> ( F : ( Z X. f ) --> ( ~P f \ { (/) } ) <-> F : ( Z X. A ) --> ( ~P A \ { (/) } ) ) ) |
| 8 | 3 7 | anbi12d | |- ( f = A -> ( ( C e. f /\ F : ( Z X. f ) --> ( ~P f \ { (/) } ) ) <-> ( C e. A /\ F : ( Z X. A ) --> ( ~P A \ { (/) } ) ) ) ) |
| 9 | feq3 | |- ( f = A -> ( g : Z --> f <-> g : Z --> A ) ) |
|
| 10 | 9 | 3anbi1d | |- ( f = A -> ( ( g : Z --> f /\ ( g ` M ) = C /\ A. k e. Z ( g ` ( k + 1 ) ) e. ( k F ( g ` k ) ) ) <-> ( g : Z --> A /\ ( g ` M ) = C /\ A. k e. Z ( g ` ( k + 1 ) ) e. ( k F ( g ` k ) ) ) ) ) |
| 11 | 10 | exbidv | |- ( f = A -> ( E. g ( g : Z --> f /\ ( g ` M ) = C /\ A. k e. Z ( g ` ( k + 1 ) ) e. ( k F ( g ` k ) ) ) <-> E. g ( g : Z --> A /\ ( g ` M ) = C /\ A. k e. Z ( g ` ( k + 1 ) ) e. ( k F ( g ` k ) ) ) ) ) |
| 12 | 8 11 | imbi12d | |- ( f = A -> ( ( ( C e. f /\ F : ( Z X. f ) --> ( ~P f \ { (/) } ) ) -> E. g ( g : Z --> f /\ ( g ` M ) = C /\ A. k e. Z ( g ` ( k + 1 ) ) e. ( k F ( g ` k ) ) ) ) <-> ( ( C e. A /\ F : ( Z X. A ) --> ( ~P A \ { (/) } ) ) -> E. g ( g : Z --> A /\ ( g ` M ) = C /\ A. k e. Z ( g ` ( k + 1 ) ) e. ( k F ( g ` k ) ) ) ) ) ) |
| 13 | vex | |- f e. _V |
|
| 14 | eqid | |- ( rec ( ( y e. _V |-> ( y + 1 ) ) , M ) |` _om ) = ( rec ( ( y e. _V |-> ( y + 1 ) ) , M ) |` _om ) |
|
| 15 | eqid | |- ( n e. _om , x e. f |-> ( ( ( rec ( ( y e. _V |-> ( y + 1 ) ) , M ) |` _om ) ` n ) F x ) ) = ( n e. _om , x e. f |-> ( ( ( rec ( ( y e. _V |-> ( y + 1 ) ) , M ) |` _om ) ` n ) F x ) ) |
|
| 16 | 1 2 13 14 15 | axdc4uzlem | |- ( ( C e. f /\ F : ( Z X. f ) --> ( ~P f \ { (/) } ) ) -> E. g ( g : Z --> f /\ ( g ` M ) = C /\ A. k e. Z ( g ` ( k + 1 ) ) e. ( k F ( g ` k ) ) ) ) |
| 17 | 12 16 | vtoclg | |- ( A e. V -> ( ( C e. A /\ F : ( Z X. A ) --> ( ~P A \ { (/) } ) ) -> E. g ( g : Z --> A /\ ( g ` M ) = C /\ A. k e. Z ( g ` ( k + 1 ) ) e. ( k F ( g ` k ) ) ) ) ) |
| 18 | 17 | 3impib | |- ( ( A e. V /\ C e. A /\ F : ( Z X. A ) --> ( ~P A \ { (/) } ) ) -> E. g ( g : Z --> A /\ ( g ` M ) = C /\ A. k e. Z ( g ` ( k + 1 ) ) e. ( k F ( g ` k ) ) ) ) |