This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An apparent strengthening of ax-dc (but derived from it) which shows that there is a denumerable sequence g for any function that maps elements of a set A to nonempty subsets of A such that g ( x + 1 ) e. F ( g ( x ) ) for all x e. _om . The finitistic version of this can be proven by induction, but the infinite version requires this new axiom. (Contributed by Mario Carneiro, 25-Jan-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | axdc2.1 | |- A e. _V |
|
| Assertion | axdc2 | |- ( ( A =/= (/) /\ F : A --> ( ~P A \ { (/) } ) ) -> E. g ( g : _om --> A /\ A. k e. _om ( g ` suc k ) e. ( F ` ( g ` k ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axdc2.1 | |- A e. _V |
|
| 2 | eleq1w | |- ( s = x -> ( s e. A <-> x e. A ) ) |
|
| 3 | 2 | adantr | |- ( ( s = x /\ t = y ) -> ( s e. A <-> x e. A ) ) |
| 4 | fveq2 | |- ( s = x -> ( F ` s ) = ( F ` x ) ) |
|
| 5 | 4 | eleq2d | |- ( s = x -> ( t e. ( F ` s ) <-> t e. ( F ` x ) ) ) |
| 6 | eleq1w | |- ( t = y -> ( t e. ( F ` x ) <-> y e. ( F ` x ) ) ) |
|
| 7 | 5 6 | sylan9bb | |- ( ( s = x /\ t = y ) -> ( t e. ( F ` s ) <-> y e. ( F ` x ) ) ) |
| 8 | 3 7 | anbi12d | |- ( ( s = x /\ t = y ) -> ( ( s e. A /\ t e. ( F ` s ) ) <-> ( x e. A /\ y e. ( F ` x ) ) ) ) |
| 9 | 8 | cbvopabv | |- { <. s , t >. | ( s e. A /\ t e. ( F ` s ) ) } = { <. x , y >. | ( x e. A /\ y e. ( F ` x ) ) } |
| 10 | fveq2 | |- ( n = x -> ( h ` n ) = ( h ` x ) ) |
|
| 11 | 10 | cbvmptv | |- ( n e. _om |-> ( h ` n ) ) = ( x e. _om |-> ( h ` x ) ) |
| 12 | 1 9 11 | axdc2lem | |- ( ( A =/= (/) /\ F : A --> ( ~P A \ { (/) } ) ) -> E. g ( g : _om --> A /\ A. k e. _om ( g ` suc k ) e. ( F ` ( g ` k ) ) ) ) |