This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Addition is an operation on the complex numbers. This theorem can be used as an alternate axiom for complex numbers in place of the less specific axaddcl . This construction-dependent theorem should not be referenced directly; instead, use ax-addf . (Contributed by NM, 8-Feb-2005) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | axaddf | |- + : ( CC X. CC ) --> CC |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | moeq | |- E* z z = <. ( w +R u ) , ( v +R f ) >. |
|
| 2 | 1 | mosubop | |- E* z E. u E. f ( y = <. u , f >. /\ z = <. ( w +R u ) , ( v +R f ) >. ) |
| 3 | 2 | mosubop | |- E* z E. w E. v ( x = <. w , v >. /\ E. u E. f ( y = <. u , f >. /\ z = <. ( w +R u ) , ( v +R f ) >. ) ) |
| 4 | anass | |- ( ( ( x = <. w , v >. /\ y = <. u , f >. ) /\ z = <. ( w +R u ) , ( v +R f ) >. ) <-> ( x = <. w , v >. /\ ( y = <. u , f >. /\ z = <. ( w +R u ) , ( v +R f ) >. ) ) ) |
|
| 5 | 4 | 2exbii | |- ( E. u E. f ( ( x = <. w , v >. /\ y = <. u , f >. ) /\ z = <. ( w +R u ) , ( v +R f ) >. ) <-> E. u E. f ( x = <. w , v >. /\ ( y = <. u , f >. /\ z = <. ( w +R u ) , ( v +R f ) >. ) ) ) |
| 6 | 19.42vv | |- ( E. u E. f ( x = <. w , v >. /\ ( y = <. u , f >. /\ z = <. ( w +R u ) , ( v +R f ) >. ) ) <-> ( x = <. w , v >. /\ E. u E. f ( y = <. u , f >. /\ z = <. ( w +R u ) , ( v +R f ) >. ) ) ) |
|
| 7 | 5 6 | bitri | |- ( E. u E. f ( ( x = <. w , v >. /\ y = <. u , f >. ) /\ z = <. ( w +R u ) , ( v +R f ) >. ) <-> ( x = <. w , v >. /\ E. u E. f ( y = <. u , f >. /\ z = <. ( w +R u ) , ( v +R f ) >. ) ) ) |
| 8 | 7 | 2exbii | |- ( E. w E. v E. u E. f ( ( x = <. w , v >. /\ y = <. u , f >. ) /\ z = <. ( w +R u ) , ( v +R f ) >. ) <-> E. w E. v ( x = <. w , v >. /\ E. u E. f ( y = <. u , f >. /\ z = <. ( w +R u ) , ( v +R f ) >. ) ) ) |
| 9 | 8 | mobii | |- ( E* z E. w E. v E. u E. f ( ( x = <. w , v >. /\ y = <. u , f >. ) /\ z = <. ( w +R u ) , ( v +R f ) >. ) <-> E* z E. w E. v ( x = <. w , v >. /\ E. u E. f ( y = <. u , f >. /\ z = <. ( w +R u ) , ( v +R f ) >. ) ) ) |
| 10 | 3 9 | mpbir | |- E* z E. w E. v E. u E. f ( ( x = <. w , v >. /\ y = <. u , f >. ) /\ z = <. ( w +R u ) , ( v +R f ) >. ) |
| 11 | 10 | moani | |- E* z ( ( x e. CC /\ y e. CC ) /\ E. w E. v E. u E. f ( ( x = <. w , v >. /\ y = <. u , f >. ) /\ z = <. ( w +R u ) , ( v +R f ) >. ) ) |
| 12 | 11 | funoprab | |- Fun { <. <. x , y >. , z >. | ( ( x e. CC /\ y e. CC ) /\ E. w E. v E. u E. f ( ( x = <. w , v >. /\ y = <. u , f >. ) /\ z = <. ( w +R u ) , ( v +R f ) >. ) ) } |
| 13 | df-add | |- + = { <. <. x , y >. , z >. | ( ( x e. CC /\ y e. CC ) /\ E. w E. v E. u E. f ( ( x = <. w , v >. /\ y = <. u , f >. ) /\ z = <. ( w +R u ) , ( v +R f ) >. ) ) } |
|
| 14 | 13 | funeqi | |- ( Fun + <-> Fun { <. <. x , y >. , z >. | ( ( x e. CC /\ y e. CC ) /\ E. w E. v E. u E. f ( ( x = <. w , v >. /\ y = <. u , f >. ) /\ z = <. ( w +R u ) , ( v +R f ) >. ) ) } ) |
| 15 | 12 14 | mpbir | |- Fun + |
| 16 | 13 | dmeqi | |- dom + = dom { <. <. x , y >. , z >. | ( ( x e. CC /\ y e. CC ) /\ E. w E. v E. u E. f ( ( x = <. w , v >. /\ y = <. u , f >. ) /\ z = <. ( w +R u ) , ( v +R f ) >. ) ) } |
| 17 | dmoprabss | |- dom { <. <. x , y >. , z >. | ( ( x e. CC /\ y e. CC ) /\ E. w E. v E. u E. f ( ( x = <. w , v >. /\ y = <. u , f >. ) /\ z = <. ( w +R u ) , ( v +R f ) >. ) ) } C_ ( CC X. CC ) |
|
| 18 | 16 17 | eqsstri | |- dom + C_ ( CC X. CC ) |
| 19 | 0ncn | |- -. (/) e. CC |
|
| 20 | df-c | |- CC = ( R. X. R. ) |
|
| 21 | oveq1 | |- ( <. z , w >. = x -> ( <. z , w >. + <. v , u >. ) = ( x + <. v , u >. ) ) |
|
| 22 | 21 | eleq1d | |- ( <. z , w >. = x -> ( ( <. z , w >. + <. v , u >. ) e. ( R. X. R. ) <-> ( x + <. v , u >. ) e. ( R. X. R. ) ) ) |
| 23 | oveq2 | |- ( <. v , u >. = y -> ( x + <. v , u >. ) = ( x + y ) ) |
|
| 24 | 23 | eleq1d | |- ( <. v , u >. = y -> ( ( x + <. v , u >. ) e. ( R. X. R. ) <-> ( x + y ) e. ( R. X. R. ) ) ) |
| 25 | addcnsr | |- ( ( ( z e. R. /\ w e. R. ) /\ ( v e. R. /\ u e. R. ) ) -> ( <. z , w >. + <. v , u >. ) = <. ( z +R v ) , ( w +R u ) >. ) |
|
| 26 | addclsr | |- ( ( z e. R. /\ v e. R. ) -> ( z +R v ) e. R. ) |
|
| 27 | addclsr | |- ( ( w e. R. /\ u e. R. ) -> ( w +R u ) e. R. ) |
|
| 28 | 26 27 | anim12i | |- ( ( ( z e. R. /\ v e. R. ) /\ ( w e. R. /\ u e. R. ) ) -> ( ( z +R v ) e. R. /\ ( w +R u ) e. R. ) ) |
| 29 | 28 | an4s | |- ( ( ( z e. R. /\ w e. R. ) /\ ( v e. R. /\ u e. R. ) ) -> ( ( z +R v ) e. R. /\ ( w +R u ) e. R. ) ) |
| 30 | opelxpi | |- ( ( ( z +R v ) e. R. /\ ( w +R u ) e. R. ) -> <. ( z +R v ) , ( w +R u ) >. e. ( R. X. R. ) ) |
|
| 31 | 29 30 | syl | |- ( ( ( z e. R. /\ w e. R. ) /\ ( v e. R. /\ u e. R. ) ) -> <. ( z +R v ) , ( w +R u ) >. e. ( R. X. R. ) ) |
| 32 | 25 31 | eqeltrd | |- ( ( ( z e. R. /\ w e. R. ) /\ ( v e. R. /\ u e. R. ) ) -> ( <. z , w >. + <. v , u >. ) e. ( R. X. R. ) ) |
| 33 | 20 22 24 32 | 2optocl | |- ( ( x e. CC /\ y e. CC ) -> ( x + y ) e. ( R. X. R. ) ) |
| 34 | 33 20 | eleqtrrdi | |- ( ( x e. CC /\ y e. CC ) -> ( x + y ) e. CC ) |
| 35 | 19 34 | oprssdm | |- ( CC X. CC ) C_ dom + |
| 36 | 18 35 | eqssi | |- dom + = ( CC X. CC ) |
| 37 | df-fn | |- ( + Fn ( CC X. CC ) <-> ( Fun + /\ dom + = ( CC X. CC ) ) ) |
|
| 38 | 15 36 37 | mpbir2an | |- + Fn ( CC X. CC ) |
| 39 | 34 | rgen2 | |- A. x e. CC A. y e. CC ( x + y ) e. CC |
| 40 | ffnov | |- ( + : ( CC X. CC ) --> CC <-> ( + Fn ( CC X. CC ) /\ A. x e. CC A. y e. CC ( x + y ) e. CC ) ) |
|
| 41 | 38 39 40 | mpbir2an | |- + : ( CC X. CC ) --> CC |