This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define addition over complex numbers. (Contributed by NM, 28-May-1995) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-add | |- + = { <. <. x , y >. , z >. | ( ( x e. CC /\ y e. CC ) /\ E. w E. v E. u E. f ( ( x = <. w , v >. /\ y = <. u , f >. ) /\ z = <. ( w +R u ) , ( v +R f ) >. ) ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | caddc | |- + |
|
| 1 | vx | |- x |
|
| 2 | vy | |- y |
|
| 3 | vz | |- z |
|
| 4 | 1 | cv | |- x |
| 5 | cc | |- CC |
|
| 6 | 4 5 | wcel | |- x e. CC |
| 7 | 2 | cv | |- y |
| 8 | 7 5 | wcel | |- y e. CC |
| 9 | 6 8 | wa | |- ( x e. CC /\ y e. CC ) |
| 10 | vw | |- w |
|
| 11 | vv | |- v |
|
| 12 | vu | |- u |
|
| 13 | vf | |- f |
|
| 14 | 10 | cv | |- w |
| 15 | 11 | cv | |- v |
| 16 | 14 15 | cop | |- <. w , v >. |
| 17 | 4 16 | wceq | |- x = <. w , v >. |
| 18 | 12 | cv | |- u |
| 19 | 13 | cv | |- f |
| 20 | 18 19 | cop | |- <. u , f >. |
| 21 | 7 20 | wceq | |- y = <. u , f >. |
| 22 | 17 21 | wa | |- ( x = <. w , v >. /\ y = <. u , f >. ) |
| 23 | 3 | cv | |- z |
| 24 | cplr | |- +R |
|
| 25 | 14 18 24 | co | |- ( w +R u ) |
| 26 | 15 19 24 | co | |- ( v +R f ) |
| 27 | 25 26 | cop | |- <. ( w +R u ) , ( v +R f ) >. |
| 28 | 23 27 | wceq | |- z = <. ( w +R u ) , ( v +R f ) >. |
| 29 | 22 28 | wa | |- ( ( x = <. w , v >. /\ y = <. u , f >. ) /\ z = <. ( w +R u ) , ( v +R f ) >. ) |
| 30 | 29 13 | wex | |- E. f ( ( x = <. w , v >. /\ y = <. u , f >. ) /\ z = <. ( w +R u ) , ( v +R f ) >. ) |
| 31 | 30 12 | wex | |- E. u E. f ( ( x = <. w , v >. /\ y = <. u , f >. ) /\ z = <. ( w +R u ) , ( v +R f ) >. ) |
| 32 | 31 11 | wex | |- E. v E. u E. f ( ( x = <. w , v >. /\ y = <. u , f >. ) /\ z = <. ( w +R u ) , ( v +R f ) >. ) |
| 33 | 32 10 | wex | |- E. w E. v E. u E. f ( ( x = <. w , v >. /\ y = <. u , f >. ) /\ z = <. ( w +R u ) , ( v +R f ) >. ) |
| 34 | 9 33 | wa | |- ( ( x e. CC /\ y e. CC ) /\ E. w E. v E. u E. f ( ( x = <. w , v >. /\ y = <. u , f >. ) /\ z = <. ( w +R u ) , ( v +R f ) >. ) ) |
| 35 | 34 1 2 3 | coprab | |- { <. <. x , y >. , z >. | ( ( x e. CC /\ y e. CC ) /\ E. w E. v E. u E. f ( ( x = <. w , v >. /\ y = <. u , f >. ) /\ z = <. ( w +R u ) , ( v +R f ) >. ) ) } |
| 36 | 0 35 | wceq | |- + = { <. <. x , y >. , z >. | ( ( x e. CC /\ y e. CC ) /\ E. w E. v E. u E. f ( ( x = <. w , v >. /\ y = <. u , f >. ) /\ z = <. ( w +R u ) , ( v +R f ) >. ) ) } |