This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A compact form of atandm . (Contributed by Mario Carneiro, 31-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | atandm3 | |- ( A e. dom arctan <-> ( A e. CC /\ ( A ^ 2 ) =/= -u 1 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3anass | |- ( ( A e. CC /\ A =/= -u _i /\ A =/= _i ) <-> ( A e. CC /\ ( A =/= -u _i /\ A =/= _i ) ) ) |
|
| 2 | atandm | |- ( A e. dom arctan <-> ( A e. CC /\ A =/= -u _i /\ A =/= _i ) ) |
|
| 3 | ax-icn | |- _i e. CC |
|
| 4 | sqeqor | |- ( ( A e. CC /\ _i e. CC ) -> ( ( A ^ 2 ) = ( _i ^ 2 ) <-> ( A = _i \/ A = -u _i ) ) ) |
|
| 5 | 3 4 | mpan2 | |- ( A e. CC -> ( ( A ^ 2 ) = ( _i ^ 2 ) <-> ( A = _i \/ A = -u _i ) ) ) |
| 6 | i2 | |- ( _i ^ 2 ) = -u 1 |
|
| 7 | 6 | eqeq2i | |- ( ( A ^ 2 ) = ( _i ^ 2 ) <-> ( A ^ 2 ) = -u 1 ) |
| 8 | orcom | |- ( ( A = _i \/ A = -u _i ) <-> ( A = -u _i \/ A = _i ) ) |
|
| 9 | 5 7 8 | 3bitr3g | |- ( A e. CC -> ( ( A ^ 2 ) = -u 1 <-> ( A = -u _i \/ A = _i ) ) ) |
| 10 | 9 | necon3abid | |- ( A e. CC -> ( ( A ^ 2 ) =/= -u 1 <-> -. ( A = -u _i \/ A = _i ) ) ) |
| 11 | neanior | |- ( ( A =/= -u _i /\ A =/= _i ) <-> -. ( A = -u _i \/ A = _i ) ) |
|
| 12 | 10 11 | bitr4di | |- ( A e. CC -> ( ( A ^ 2 ) =/= -u 1 <-> ( A =/= -u _i /\ A =/= _i ) ) ) |
| 13 | 12 | pm5.32i | |- ( ( A e. CC /\ ( A ^ 2 ) =/= -u 1 ) <-> ( A e. CC /\ ( A =/= -u _i /\ A =/= _i ) ) ) |
| 14 | 1 2 13 | 3bitr4i | |- ( A e. dom arctan <-> ( A e. CC /\ ( A ^ 2 ) =/= -u 1 ) ) |