This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: No cardinal can be sandwiched between an aleph and its successor aleph. Theorem 67 of Suppes p. 229. (Contributed by NM, 10-Nov-2003) (Revised by Mario Carneiro, 15-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | alephnbtwn | |- ( ( card ` B ) = B -> -. ( ( aleph ` A ) e. B /\ B e. ( aleph ` suc A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alephon | |- ( aleph ` A ) e. On |
|
| 2 | id | |- ( ( card ` B ) = B -> ( card ` B ) = B ) |
|
| 3 | cardon | |- ( card ` B ) e. On |
|
| 4 | 2 3 | eqeltrrdi | |- ( ( card ` B ) = B -> B e. On ) |
| 5 | onenon | |- ( B e. On -> B e. dom card ) |
|
| 6 | 4 5 | syl | |- ( ( card ` B ) = B -> B e. dom card ) |
| 7 | cardsdomel | |- ( ( ( aleph ` A ) e. On /\ B e. dom card ) -> ( ( aleph ` A ) ~< B <-> ( aleph ` A ) e. ( card ` B ) ) ) |
|
| 8 | 1 6 7 | sylancr | |- ( ( card ` B ) = B -> ( ( aleph ` A ) ~< B <-> ( aleph ` A ) e. ( card ` B ) ) ) |
| 9 | eleq2 | |- ( ( card ` B ) = B -> ( ( aleph ` A ) e. ( card ` B ) <-> ( aleph ` A ) e. B ) ) |
|
| 10 | 8 9 | bitrd | |- ( ( card ` B ) = B -> ( ( aleph ` A ) ~< B <-> ( aleph ` A ) e. B ) ) |
| 11 | 10 | adantl | |- ( ( A e. On /\ ( card ` B ) = B ) -> ( ( aleph ` A ) ~< B <-> ( aleph ` A ) e. B ) ) |
| 12 | alephsuc | |- ( A e. On -> ( aleph ` suc A ) = ( har ` ( aleph ` A ) ) ) |
|
| 13 | onenon | |- ( ( aleph ` A ) e. On -> ( aleph ` A ) e. dom card ) |
|
| 14 | harval2 | |- ( ( aleph ` A ) e. dom card -> ( har ` ( aleph ` A ) ) = |^| { x e. On | ( aleph ` A ) ~< x } ) |
|
| 15 | 1 13 14 | mp2b | |- ( har ` ( aleph ` A ) ) = |^| { x e. On | ( aleph ` A ) ~< x } |
| 16 | 12 15 | eqtrdi | |- ( A e. On -> ( aleph ` suc A ) = |^| { x e. On | ( aleph ` A ) ~< x } ) |
| 17 | 16 | eleq2d | |- ( A e. On -> ( B e. ( aleph ` suc A ) <-> B e. |^| { x e. On | ( aleph ` A ) ~< x } ) ) |
| 18 | 17 | biimpd | |- ( A e. On -> ( B e. ( aleph ` suc A ) -> B e. |^| { x e. On | ( aleph ` A ) ~< x } ) ) |
| 19 | breq2 | |- ( x = B -> ( ( aleph ` A ) ~< x <-> ( aleph ` A ) ~< B ) ) |
|
| 20 | 19 | onnminsb | |- ( B e. On -> ( B e. |^| { x e. On | ( aleph ` A ) ~< x } -> -. ( aleph ` A ) ~< B ) ) |
| 21 | 18 20 | sylan9 | |- ( ( A e. On /\ B e. On ) -> ( B e. ( aleph ` suc A ) -> -. ( aleph ` A ) ~< B ) ) |
| 22 | 21 | con2d | |- ( ( A e. On /\ B e. On ) -> ( ( aleph ` A ) ~< B -> -. B e. ( aleph ` suc A ) ) ) |
| 23 | 4 22 | sylan2 | |- ( ( A e. On /\ ( card ` B ) = B ) -> ( ( aleph ` A ) ~< B -> -. B e. ( aleph ` suc A ) ) ) |
| 24 | 11 23 | sylbird | |- ( ( A e. On /\ ( card ` B ) = B ) -> ( ( aleph ` A ) e. B -> -. B e. ( aleph ` suc A ) ) ) |
| 25 | imnan | |- ( ( ( aleph ` A ) e. B -> -. B e. ( aleph ` suc A ) ) <-> -. ( ( aleph ` A ) e. B /\ B e. ( aleph ` suc A ) ) ) |
|
| 26 | 24 25 | sylib | |- ( ( A e. On /\ ( card ` B ) = B ) -> -. ( ( aleph ` A ) e. B /\ B e. ( aleph ` suc A ) ) ) |
| 27 | 26 | ex | |- ( A e. On -> ( ( card ` B ) = B -> -. ( ( aleph ` A ) e. B /\ B e. ( aleph ` suc A ) ) ) ) |
| 28 | n0i | |- ( B e. ( aleph ` suc A ) -> -. ( aleph ` suc A ) = (/) ) |
|
| 29 | alephfnon | |- aleph Fn On |
|
| 30 | 29 | fndmi | |- dom aleph = On |
| 31 | 30 | eleq2i | |- ( suc A e. dom aleph <-> suc A e. On ) |
| 32 | ndmfv | |- ( -. suc A e. dom aleph -> ( aleph ` suc A ) = (/) ) |
|
| 33 | 31 32 | sylnbir | |- ( -. suc A e. On -> ( aleph ` suc A ) = (/) ) |
| 34 | 28 33 | nsyl2 | |- ( B e. ( aleph ` suc A ) -> suc A e. On ) |
| 35 | onsucb | |- ( A e. On <-> suc A e. On ) |
|
| 36 | 34 35 | sylibr | |- ( B e. ( aleph ` suc A ) -> A e. On ) |
| 37 | 36 | adantl | |- ( ( ( aleph ` A ) e. B /\ B e. ( aleph ` suc A ) ) -> A e. On ) |
| 38 | 37 | con3i | |- ( -. A e. On -> -. ( ( aleph ` A ) e. B /\ B e. ( aleph ` suc A ) ) ) |
| 39 | 38 | a1d | |- ( -. A e. On -> ( ( card ` B ) = B -> -. ( ( aleph ` A ) e. B /\ B e. ( aleph ` suc A ) ) ) ) |
| 40 | 27 39 | pm2.61i | |- ( ( card ` B ) = B -> -. ( ( aleph ` A ) e. B /\ B e. ( aleph ` suc A ) ) ) |