This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: No set has equinumerosity between an aleph and its successor aleph. (Contributed by NM, 3-Nov-2003) (Revised by Mario Carneiro, 2-Feb-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | alephnbtwn2 | |- -. ( ( aleph ` A ) ~< B /\ B ~< ( aleph ` suc A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cardidm | |- ( card ` ( card ` B ) ) = ( card ` B ) |
|
| 2 | alephnbtwn | |- ( ( card ` ( card ` B ) ) = ( card ` B ) -> -. ( ( aleph ` A ) e. ( card ` B ) /\ ( card ` B ) e. ( aleph ` suc A ) ) ) |
|
| 3 | 1 2 | ax-mp | |- -. ( ( aleph ` A ) e. ( card ` B ) /\ ( card ` B ) e. ( aleph ` suc A ) ) |
| 4 | alephon | |- ( aleph ` suc A ) e. On |
|
| 5 | sdomdom | |- ( B ~< ( aleph ` suc A ) -> B ~<_ ( aleph ` suc A ) ) |
|
| 6 | ondomen | |- ( ( ( aleph ` suc A ) e. On /\ B ~<_ ( aleph ` suc A ) ) -> B e. dom card ) |
|
| 7 | 4 5 6 | sylancr | |- ( B ~< ( aleph ` suc A ) -> B e. dom card ) |
| 8 | cardid2 | |- ( B e. dom card -> ( card ` B ) ~~ B ) |
|
| 9 | 7 8 | syl | |- ( B ~< ( aleph ` suc A ) -> ( card ` B ) ~~ B ) |
| 10 | 9 | ensymd | |- ( B ~< ( aleph ` suc A ) -> B ~~ ( card ` B ) ) |
| 11 | sdomentr | |- ( ( ( aleph ` A ) ~< B /\ B ~~ ( card ` B ) ) -> ( aleph ` A ) ~< ( card ` B ) ) |
|
| 12 | 10 11 | sylan2 | |- ( ( ( aleph ` A ) ~< B /\ B ~< ( aleph ` suc A ) ) -> ( aleph ` A ) ~< ( card ` B ) ) |
| 13 | alephon | |- ( aleph ` A ) e. On |
|
| 14 | cardon | |- ( card ` B ) e. On |
|
| 15 | onenon | |- ( ( card ` B ) e. On -> ( card ` B ) e. dom card ) |
|
| 16 | 14 15 | ax-mp | |- ( card ` B ) e. dom card |
| 17 | cardsdomel | |- ( ( ( aleph ` A ) e. On /\ ( card ` B ) e. dom card ) -> ( ( aleph ` A ) ~< ( card ` B ) <-> ( aleph ` A ) e. ( card ` ( card ` B ) ) ) ) |
|
| 18 | 13 16 17 | mp2an | |- ( ( aleph ` A ) ~< ( card ` B ) <-> ( aleph ` A ) e. ( card ` ( card ` B ) ) ) |
| 19 | 1 | eleq2i | |- ( ( aleph ` A ) e. ( card ` ( card ` B ) ) <-> ( aleph ` A ) e. ( card ` B ) ) |
| 20 | 18 19 | bitri | |- ( ( aleph ` A ) ~< ( card ` B ) <-> ( aleph ` A ) e. ( card ` B ) ) |
| 21 | 12 20 | sylib | |- ( ( ( aleph ` A ) ~< B /\ B ~< ( aleph ` suc A ) ) -> ( aleph ` A ) e. ( card ` B ) ) |
| 22 | ensdomtr | |- ( ( ( card ` B ) ~~ B /\ B ~< ( aleph ` suc A ) ) -> ( card ` B ) ~< ( aleph ` suc A ) ) |
|
| 23 | 9 22 | mpancom | |- ( B ~< ( aleph ` suc A ) -> ( card ` B ) ~< ( aleph ` suc A ) ) |
| 24 | 23 | adantl | |- ( ( ( aleph ` A ) ~< B /\ B ~< ( aleph ` suc A ) ) -> ( card ` B ) ~< ( aleph ` suc A ) ) |
| 25 | onenon | |- ( ( aleph ` suc A ) e. On -> ( aleph ` suc A ) e. dom card ) |
|
| 26 | 4 25 | ax-mp | |- ( aleph ` suc A ) e. dom card |
| 27 | cardsdomel | |- ( ( ( card ` B ) e. On /\ ( aleph ` suc A ) e. dom card ) -> ( ( card ` B ) ~< ( aleph ` suc A ) <-> ( card ` B ) e. ( card ` ( aleph ` suc A ) ) ) ) |
|
| 28 | 14 26 27 | mp2an | |- ( ( card ` B ) ~< ( aleph ` suc A ) <-> ( card ` B ) e. ( card ` ( aleph ` suc A ) ) ) |
| 29 | alephcard | |- ( card ` ( aleph ` suc A ) ) = ( aleph ` suc A ) |
|
| 30 | 29 | eleq2i | |- ( ( card ` B ) e. ( card ` ( aleph ` suc A ) ) <-> ( card ` B ) e. ( aleph ` suc A ) ) |
| 31 | 28 30 | bitri | |- ( ( card ` B ) ~< ( aleph ` suc A ) <-> ( card ` B ) e. ( aleph ` suc A ) ) |
| 32 | 24 31 | sylib | |- ( ( ( aleph ` A ) ~< B /\ B ~< ( aleph ` suc A ) ) -> ( card ` B ) e. ( aleph ` suc A ) ) |
| 33 | 21 32 | jca | |- ( ( ( aleph ` A ) ~< B /\ B ~< ( aleph ` suc A ) ) -> ( ( aleph ` A ) e. ( card ` B ) /\ ( card ` B ) e. ( aleph ` suc A ) ) ) |
| 34 | 3 33 | mto | |- -. ( ( aleph ` A ) ~< B /\ B ~< ( aleph ` suc A ) ) |