This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: No cardinal can be sandwiched between an aleph and its successor aleph. Theorem 67 of Suppes p. 229. (Contributed by NM, 10-Nov-2003) (Revised by Mario Carneiro, 15-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | alephnbtwn | ⊢ ( ( card ‘ 𝐵 ) = 𝐵 → ¬ ( ( ℵ ‘ 𝐴 ) ∈ 𝐵 ∧ 𝐵 ∈ ( ℵ ‘ suc 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alephon | ⊢ ( ℵ ‘ 𝐴 ) ∈ On | |
| 2 | id | ⊢ ( ( card ‘ 𝐵 ) = 𝐵 → ( card ‘ 𝐵 ) = 𝐵 ) | |
| 3 | cardon | ⊢ ( card ‘ 𝐵 ) ∈ On | |
| 4 | 2 3 | eqeltrrdi | ⊢ ( ( card ‘ 𝐵 ) = 𝐵 → 𝐵 ∈ On ) |
| 5 | onenon | ⊢ ( 𝐵 ∈ On → 𝐵 ∈ dom card ) | |
| 6 | 4 5 | syl | ⊢ ( ( card ‘ 𝐵 ) = 𝐵 → 𝐵 ∈ dom card ) |
| 7 | cardsdomel | ⊢ ( ( ( ℵ ‘ 𝐴 ) ∈ On ∧ 𝐵 ∈ dom card ) → ( ( ℵ ‘ 𝐴 ) ≺ 𝐵 ↔ ( ℵ ‘ 𝐴 ) ∈ ( card ‘ 𝐵 ) ) ) | |
| 8 | 1 6 7 | sylancr | ⊢ ( ( card ‘ 𝐵 ) = 𝐵 → ( ( ℵ ‘ 𝐴 ) ≺ 𝐵 ↔ ( ℵ ‘ 𝐴 ) ∈ ( card ‘ 𝐵 ) ) ) |
| 9 | eleq2 | ⊢ ( ( card ‘ 𝐵 ) = 𝐵 → ( ( ℵ ‘ 𝐴 ) ∈ ( card ‘ 𝐵 ) ↔ ( ℵ ‘ 𝐴 ) ∈ 𝐵 ) ) | |
| 10 | 8 9 | bitrd | ⊢ ( ( card ‘ 𝐵 ) = 𝐵 → ( ( ℵ ‘ 𝐴 ) ≺ 𝐵 ↔ ( ℵ ‘ 𝐴 ) ∈ 𝐵 ) ) |
| 11 | 10 | adantl | ⊢ ( ( 𝐴 ∈ On ∧ ( card ‘ 𝐵 ) = 𝐵 ) → ( ( ℵ ‘ 𝐴 ) ≺ 𝐵 ↔ ( ℵ ‘ 𝐴 ) ∈ 𝐵 ) ) |
| 12 | alephsuc | ⊢ ( 𝐴 ∈ On → ( ℵ ‘ suc 𝐴 ) = ( har ‘ ( ℵ ‘ 𝐴 ) ) ) | |
| 13 | onenon | ⊢ ( ( ℵ ‘ 𝐴 ) ∈ On → ( ℵ ‘ 𝐴 ) ∈ dom card ) | |
| 14 | harval2 | ⊢ ( ( ℵ ‘ 𝐴 ) ∈ dom card → ( har ‘ ( ℵ ‘ 𝐴 ) ) = ∩ { 𝑥 ∈ On ∣ ( ℵ ‘ 𝐴 ) ≺ 𝑥 } ) | |
| 15 | 1 13 14 | mp2b | ⊢ ( har ‘ ( ℵ ‘ 𝐴 ) ) = ∩ { 𝑥 ∈ On ∣ ( ℵ ‘ 𝐴 ) ≺ 𝑥 } |
| 16 | 12 15 | eqtrdi | ⊢ ( 𝐴 ∈ On → ( ℵ ‘ suc 𝐴 ) = ∩ { 𝑥 ∈ On ∣ ( ℵ ‘ 𝐴 ) ≺ 𝑥 } ) |
| 17 | 16 | eleq2d | ⊢ ( 𝐴 ∈ On → ( 𝐵 ∈ ( ℵ ‘ suc 𝐴 ) ↔ 𝐵 ∈ ∩ { 𝑥 ∈ On ∣ ( ℵ ‘ 𝐴 ) ≺ 𝑥 } ) ) |
| 18 | 17 | biimpd | ⊢ ( 𝐴 ∈ On → ( 𝐵 ∈ ( ℵ ‘ suc 𝐴 ) → 𝐵 ∈ ∩ { 𝑥 ∈ On ∣ ( ℵ ‘ 𝐴 ) ≺ 𝑥 } ) ) |
| 19 | breq2 | ⊢ ( 𝑥 = 𝐵 → ( ( ℵ ‘ 𝐴 ) ≺ 𝑥 ↔ ( ℵ ‘ 𝐴 ) ≺ 𝐵 ) ) | |
| 20 | 19 | onnminsb | ⊢ ( 𝐵 ∈ On → ( 𝐵 ∈ ∩ { 𝑥 ∈ On ∣ ( ℵ ‘ 𝐴 ) ≺ 𝑥 } → ¬ ( ℵ ‘ 𝐴 ) ≺ 𝐵 ) ) |
| 21 | 18 20 | sylan9 | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐵 ∈ ( ℵ ‘ suc 𝐴 ) → ¬ ( ℵ ‘ 𝐴 ) ≺ 𝐵 ) ) |
| 22 | 21 | con2d | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( ℵ ‘ 𝐴 ) ≺ 𝐵 → ¬ 𝐵 ∈ ( ℵ ‘ suc 𝐴 ) ) ) |
| 23 | 4 22 | sylan2 | ⊢ ( ( 𝐴 ∈ On ∧ ( card ‘ 𝐵 ) = 𝐵 ) → ( ( ℵ ‘ 𝐴 ) ≺ 𝐵 → ¬ 𝐵 ∈ ( ℵ ‘ suc 𝐴 ) ) ) |
| 24 | 11 23 | sylbird | ⊢ ( ( 𝐴 ∈ On ∧ ( card ‘ 𝐵 ) = 𝐵 ) → ( ( ℵ ‘ 𝐴 ) ∈ 𝐵 → ¬ 𝐵 ∈ ( ℵ ‘ suc 𝐴 ) ) ) |
| 25 | imnan | ⊢ ( ( ( ℵ ‘ 𝐴 ) ∈ 𝐵 → ¬ 𝐵 ∈ ( ℵ ‘ suc 𝐴 ) ) ↔ ¬ ( ( ℵ ‘ 𝐴 ) ∈ 𝐵 ∧ 𝐵 ∈ ( ℵ ‘ suc 𝐴 ) ) ) | |
| 26 | 24 25 | sylib | ⊢ ( ( 𝐴 ∈ On ∧ ( card ‘ 𝐵 ) = 𝐵 ) → ¬ ( ( ℵ ‘ 𝐴 ) ∈ 𝐵 ∧ 𝐵 ∈ ( ℵ ‘ suc 𝐴 ) ) ) |
| 27 | 26 | ex | ⊢ ( 𝐴 ∈ On → ( ( card ‘ 𝐵 ) = 𝐵 → ¬ ( ( ℵ ‘ 𝐴 ) ∈ 𝐵 ∧ 𝐵 ∈ ( ℵ ‘ suc 𝐴 ) ) ) ) |
| 28 | n0i | ⊢ ( 𝐵 ∈ ( ℵ ‘ suc 𝐴 ) → ¬ ( ℵ ‘ suc 𝐴 ) = ∅ ) | |
| 29 | alephfnon | ⊢ ℵ Fn On | |
| 30 | 29 | fndmi | ⊢ dom ℵ = On |
| 31 | 30 | eleq2i | ⊢ ( suc 𝐴 ∈ dom ℵ ↔ suc 𝐴 ∈ On ) |
| 32 | ndmfv | ⊢ ( ¬ suc 𝐴 ∈ dom ℵ → ( ℵ ‘ suc 𝐴 ) = ∅ ) | |
| 33 | 31 32 | sylnbir | ⊢ ( ¬ suc 𝐴 ∈ On → ( ℵ ‘ suc 𝐴 ) = ∅ ) |
| 34 | 28 33 | nsyl2 | ⊢ ( 𝐵 ∈ ( ℵ ‘ suc 𝐴 ) → suc 𝐴 ∈ On ) |
| 35 | onsucb | ⊢ ( 𝐴 ∈ On ↔ suc 𝐴 ∈ On ) | |
| 36 | 34 35 | sylibr | ⊢ ( 𝐵 ∈ ( ℵ ‘ suc 𝐴 ) → 𝐴 ∈ On ) |
| 37 | 36 | adantl | ⊢ ( ( ( ℵ ‘ 𝐴 ) ∈ 𝐵 ∧ 𝐵 ∈ ( ℵ ‘ suc 𝐴 ) ) → 𝐴 ∈ On ) |
| 38 | 37 | con3i | ⊢ ( ¬ 𝐴 ∈ On → ¬ ( ( ℵ ‘ 𝐴 ) ∈ 𝐵 ∧ 𝐵 ∈ ( ℵ ‘ suc 𝐴 ) ) ) |
| 39 | 38 | a1d | ⊢ ( ¬ 𝐴 ∈ On → ( ( card ‘ 𝐵 ) = 𝐵 → ¬ ( ( ℵ ‘ 𝐴 ) ∈ 𝐵 ∧ 𝐵 ∈ ( ℵ ‘ suc 𝐴 ) ) ) ) |
| 40 | 27 39 | pm2.61i | ⊢ ( ( card ‘ 𝐵 ) = 𝐵 → ¬ ( ( ℵ ‘ 𝐴 ) ∈ 𝐵 ∧ 𝐵 ∈ ( ℵ ‘ suc 𝐴 ) ) ) |