This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An alternate expression for the Hartogs number of a well-orderable set. (Contributed by Mario Carneiro, 15-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | harval2 | |- ( A e. dom card -> ( har ` A ) = |^| { x e. On | A ~< x } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | harval | |- ( A e. dom card -> ( har ` A ) = { y e. On | y ~<_ A } ) |
|
| 2 | 1 | adantr | |- ( ( A e. dom card /\ ( x e. On /\ A ~< x ) ) -> ( har ` A ) = { y e. On | y ~<_ A } ) |
| 3 | sdomel | |- ( ( y e. On /\ x e. On ) -> ( y ~< x -> y e. x ) ) |
|
| 4 | domsdomtr | |- ( ( y ~<_ A /\ A ~< x ) -> y ~< x ) |
|
| 5 | 3 4 | impel | |- ( ( ( y e. On /\ x e. On ) /\ ( y ~<_ A /\ A ~< x ) ) -> y e. x ) |
| 6 | 5 | an4s | |- ( ( ( y e. On /\ y ~<_ A ) /\ ( x e. On /\ A ~< x ) ) -> y e. x ) |
| 7 | 6 | ancoms | |- ( ( ( x e. On /\ A ~< x ) /\ ( y e. On /\ y ~<_ A ) ) -> y e. x ) |
| 8 | 7 | 3impb | |- ( ( ( x e. On /\ A ~< x ) /\ y e. On /\ y ~<_ A ) -> y e. x ) |
| 9 | 8 | rabssdv | |- ( ( x e. On /\ A ~< x ) -> { y e. On | y ~<_ A } C_ x ) |
| 10 | 9 | adantl | |- ( ( A e. dom card /\ ( x e. On /\ A ~< x ) ) -> { y e. On | y ~<_ A } C_ x ) |
| 11 | 2 10 | eqsstrd | |- ( ( A e. dom card /\ ( x e. On /\ A ~< x ) ) -> ( har ` A ) C_ x ) |
| 12 | 11 | expr | |- ( ( A e. dom card /\ x e. On ) -> ( A ~< x -> ( har ` A ) C_ x ) ) |
| 13 | 12 | ralrimiva | |- ( A e. dom card -> A. x e. On ( A ~< x -> ( har ` A ) C_ x ) ) |
| 14 | ssintrab | |- ( ( har ` A ) C_ |^| { x e. On | A ~< x } <-> A. x e. On ( A ~< x -> ( har ` A ) C_ x ) ) |
|
| 15 | 13 14 | sylibr | |- ( A e. dom card -> ( har ` A ) C_ |^| { x e. On | A ~< x } ) |
| 16 | breq2 | |- ( x = ( har ` A ) -> ( A ~< x <-> A ~< ( har ` A ) ) ) |
|
| 17 | harcl | |- ( har ` A ) e. On |
|
| 18 | 17 | a1i | |- ( A e. dom card -> ( har ` A ) e. On ) |
| 19 | harsdom | |- ( A e. dom card -> A ~< ( har ` A ) ) |
|
| 20 | 16 18 19 | elrabd | |- ( A e. dom card -> ( har ` A ) e. { x e. On | A ~< x } ) |
| 21 | intss1 | |- ( ( har ` A ) e. { x e. On | A ~< x } -> |^| { x e. On | A ~< x } C_ ( har ` A ) ) |
|
| 22 | 20 21 | syl | |- ( A e. dom card -> |^| { x e. On | A ~< x } C_ ( har ` A ) ) |
| 23 | 15 22 | eqssd | |- ( A e. dom card -> ( har ` A ) = |^| { x e. On | A ~< x } ) |