This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The aleph function has a fixed point. Similar to Proposition 11.18 of TakeutiZaring p. 104, except that we construct an actual example of a fixed point rather than just showing its existence. See alephfp2 for an abbreviated version just showing existence. (Contributed by NM, 6-Nov-2004) (Proof shortened by Mario Carneiro, 15-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | alephfplem.1 | |- H = ( rec ( aleph , _om ) |` _om ) |
|
| Assertion | alephfp | |- ( aleph ` U. ( H " _om ) ) = U. ( H " _om ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alephfplem.1 | |- H = ( rec ( aleph , _om ) |` _om ) |
|
| 2 | 1 | alephfplem4 | |- U. ( H " _om ) e. ran aleph |
| 3 | isinfcard | |- ( ( _om C_ U. ( H " _om ) /\ ( card ` U. ( H " _om ) ) = U. ( H " _om ) ) <-> U. ( H " _om ) e. ran aleph ) |
|
| 4 | cardalephex | |- ( _om C_ U. ( H " _om ) -> ( ( card ` U. ( H " _om ) ) = U. ( H " _om ) <-> E. z e. On U. ( H " _om ) = ( aleph ` z ) ) ) |
|
| 5 | 4 | biimpa | |- ( ( _om C_ U. ( H " _om ) /\ ( card ` U. ( H " _om ) ) = U. ( H " _om ) ) -> E. z e. On U. ( H " _om ) = ( aleph ` z ) ) |
| 6 | 3 5 | sylbir | |- ( U. ( H " _om ) e. ran aleph -> E. z e. On U. ( H " _om ) = ( aleph ` z ) ) |
| 7 | alephle | |- ( z e. On -> z C_ ( aleph ` z ) ) |
|
| 8 | alephon | |- ( aleph ` z ) e. On |
|
| 9 | 8 | onirri | |- -. ( aleph ` z ) e. ( aleph ` z ) |
| 10 | frfnom | |- ( rec ( aleph , _om ) |` _om ) Fn _om |
|
| 11 | 1 | fneq1i | |- ( H Fn _om <-> ( rec ( aleph , _om ) |` _om ) Fn _om ) |
| 12 | 10 11 | mpbir | |- H Fn _om |
| 13 | fnfun | |- ( H Fn _om -> Fun H ) |
|
| 14 | eluniima | |- ( Fun H -> ( z e. U. ( H " _om ) <-> E. v e. _om z e. ( H ` v ) ) ) |
|
| 15 | 12 13 14 | mp2b | |- ( z e. U. ( H " _om ) <-> E. v e. _om z e. ( H ` v ) ) |
| 16 | alephsson | |- ran aleph C_ On |
|
| 17 | 1 | alephfplem3 | |- ( v e. _om -> ( H ` v ) e. ran aleph ) |
| 18 | 16 17 | sselid | |- ( v e. _om -> ( H ` v ) e. On ) |
| 19 | alephord2i | |- ( ( H ` v ) e. On -> ( z e. ( H ` v ) -> ( aleph ` z ) e. ( aleph ` ( H ` v ) ) ) ) |
|
| 20 | 18 19 | syl | |- ( v e. _om -> ( z e. ( H ` v ) -> ( aleph ` z ) e. ( aleph ` ( H ` v ) ) ) ) |
| 21 | 1 | alephfplem2 | |- ( v e. _om -> ( H ` suc v ) = ( aleph ` ( H ` v ) ) ) |
| 22 | peano2 | |- ( v e. _om -> suc v e. _om ) |
|
| 23 | fnfvelrn | |- ( ( H Fn _om /\ suc v e. _om ) -> ( H ` suc v ) e. ran H ) |
|
| 24 | 12 23 | mpan | |- ( suc v e. _om -> ( H ` suc v ) e. ran H ) |
| 25 | fnima | |- ( H Fn _om -> ( H " _om ) = ran H ) |
|
| 26 | 12 25 | ax-mp | |- ( H " _om ) = ran H |
| 27 | 24 26 | eleqtrrdi | |- ( suc v e. _om -> ( H ` suc v ) e. ( H " _om ) ) |
| 28 | 22 27 | syl | |- ( v e. _om -> ( H ` suc v ) e. ( H " _om ) ) |
| 29 | 21 28 | eqeltrrd | |- ( v e. _om -> ( aleph ` ( H ` v ) ) e. ( H " _om ) ) |
| 30 | elssuni | |- ( ( aleph ` ( H ` v ) ) e. ( H " _om ) -> ( aleph ` ( H ` v ) ) C_ U. ( H " _om ) ) |
|
| 31 | 29 30 | syl | |- ( v e. _om -> ( aleph ` ( H ` v ) ) C_ U. ( H " _om ) ) |
| 32 | 31 | sseld | |- ( v e. _om -> ( ( aleph ` z ) e. ( aleph ` ( H ` v ) ) -> ( aleph ` z ) e. U. ( H " _om ) ) ) |
| 33 | 20 32 | syld | |- ( v e. _om -> ( z e. ( H ` v ) -> ( aleph ` z ) e. U. ( H " _om ) ) ) |
| 34 | 33 | rexlimiv | |- ( E. v e. _om z e. ( H ` v ) -> ( aleph ` z ) e. U. ( H " _om ) ) |
| 35 | 15 34 | sylbi | |- ( z e. U. ( H " _om ) -> ( aleph ` z ) e. U. ( H " _om ) ) |
| 36 | eleq2 | |- ( U. ( H " _om ) = ( aleph ` z ) -> ( z e. U. ( H " _om ) <-> z e. ( aleph ` z ) ) ) |
|
| 37 | eleq2 | |- ( U. ( H " _om ) = ( aleph ` z ) -> ( ( aleph ` z ) e. U. ( H " _om ) <-> ( aleph ` z ) e. ( aleph ` z ) ) ) |
|
| 38 | 36 37 | imbi12d | |- ( U. ( H " _om ) = ( aleph ` z ) -> ( ( z e. U. ( H " _om ) -> ( aleph ` z ) e. U. ( H " _om ) ) <-> ( z e. ( aleph ` z ) -> ( aleph ` z ) e. ( aleph ` z ) ) ) ) |
| 39 | 35 38 | mpbii | |- ( U. ( H " _om ) = ( aleph ` z ) -> ( z e. ( aleph ` z ) -> ( aleph ` z ) e. ( aleph ` z ) ) ) |
| 40 | 9 39 | mtoi | |- ( U. ( H " _om ) = ( aleph ` z ) -> -. z e. ( aleph ` z ) ) |
| 41 | 7 40 | anim12i | |- ( ( z e. On /\ U. ( H " _om ) = ( aleph ` z ) ) -> ( z C_ ( aleph ` z ) /\ -. z e. ( aleph ` z ) ) ) |
| 42 | eloni | |- ( z e. On -> Ord z ) |
|
| 43 | 8 | onordi | |- Ord ( aleph ` z ) |
| 44 | ordtri4 | |- ( ( Ord z /\ Ord ( aleph ` z ) ) -> ( z = ( aleph ` z ) <-> ( z C_ ( aleph ` z ) /\ -. z e. ( aleph ` z ) ) ) ) |
|
| 45 | 42 43 44 | sylancl | |- ( z e. On -> ( z = ( aleph ` z ) <-> ( z C_ ( aleph ` z ) /\ -. z e. ( aleph ` z ) ) ) ) |
| 46 | 45 | adantr | |- ( ( z e. On /\ U. ( H " _om ) = ( aleph ` z ) ) -> ( z = ( aleph ` z ) <-> ( z C_ ( aleph ` z ) /\ -. z e. ( aleph ` z ) ) ) ) |
| 47 | 41 46 | mpbird | |- ( ( z e. On /\ U. ( H " _om ) = ( aleph ` z ) ) -> z = ( aleph ` z ) ) |
| 48 | eqeq2 | |- ( U. ( H " _om ) = ( aleph ` z ) -> ( z = U. ( H " _om ) <-> z = ( aleph ` z ) ) ) |
|
| 49 | 48 | adantl | |- ( ( z e. On /\ U. ( H " _om ) = ( aleph ` z ) ) -> ( z = U. ( H " _om ) <-> z = ( aleph ` z ) ) ) |
| 50 | 47 49 | mpbird | |- ( ( z e. On /\ U. ( H " _om ) = ( aleph ` z ) ) -> z = U. ( H " _om ) ) |
| 51 | 50 | eqcomd | |- ( ( z e. On /\ U. ( H " _om ) = ( aleph ` z ) ) -> U. ( H " _om ) = z ) |
| 52 | 51 | fveq2d | |- ( ( z e. On /\ U. ( H " _om ) = ( aleph ` z ) ) -> ( aleph ` U. ( H " _om ) ) = ( aleph ` z ) ) |
| 53 | eqeq2 | |- ( U. ( H " _om ) = ( aleph ` z ) -> ( ( aleph ` U. ( H " _om ) ) = U. ( H " _om ) <-> ( aleph ` U. ( H " _om ) ) = ( aleph ` z ) ) ) |
|
| 54 | 53 | adantl | |- ( ( z e. On /\ U. ( H " _om ) = ( aleph ` z ) ) -> ( ( aleph ` U. ( H " _om ) ) = U. ( H " _om ) <-> ( aleph ` U. ( H " _om ) ) = ( aleph ` z ) ) ) |
| 55 | 52 54 | mpbird | |- ( ( z e. On /\ U. ( H " _om ) = ( aleph ` z ) ) -> ( aleph ` U. ( H " _om ) ) = U. ( H " _om ) ) |
| 56 | 55 | rexlimiva | |- ( E. z e. On U. ( H " _om ) = ( aleph ` z ) -> ( aleph ` U. ( H " _om ) ) = U. ( H " _om ) ) |
| 57 | 2 6 56 | mp2b | |- ( aleph ` U. ( H " _om ) ) = U. ( H " _om ) |